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ABSTRACT
We consider pricing and resource allocation decisions in stochastic networks that provide
Quality of Service (QoS) guarantees. Such networks model several networked systems.
including communication networks that support real-time services and supply chains that
emphasize customer satisfaction. We focus into two instances of these problems: (i) revenue
or welfare maximization in QoS-capable communication networks, and (ii) inventory control
in supply chains subject to given QoS requirements.

Regarding problem (i), we study pricing in communication networks with fized routing
that offer multiple classes of service. Prices for these services can depend on congestion con-
ditions and affect user’s demand. Our main result is that static pricing is asymptotically
optimal in a regime of many, relatively small, users for both objectives of revenue and wel-
fare maximization. In particular, the performance of an optimal (dynamic) pricing strategy
is closely matched by a static pricing policy which is independent of congestion conditions.
Our analysis reveals the structure of the asymptotically optimal static prices. Using this
structure, and employing a simulation-based approach, we can efficiently compute an effec-
tive policy for large networks, even away from the limiting regime. For the simpler case of
a single-node problem, we also develop an approzimate dynamic programming approach to
compute near-optimal policies in large systems.

We further extend our setting by considering demand functions that allow one service
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class to serve as a substitute of another. For such networks, under certain conditions, we
also show that static pricing is asymptotically optimal in the same regime of many small
users.

Regarding problem (ii), we study QoS-capable supply chains consisting of a tandem of
production facilities (stages). Unsatisfied external demand is backlogged. We quantify QoS
by the stockout probabilities at various stages. We propose production policies in two sepa-
rate cases: when each stage (a) has only local inventory information, and (b) has knowledge
of the total downstream inventory. In case (a) the proposed policy guarantees service level
requirements. In case (b) the proposed policy minimizes expected inventory costs subject to
QoS constraints. In both cases policy parameters are obtained analytically, based on large
deviations asymptotics, which leads to drastic computational savings compared to simula-
tion. Our model can accommodate autocorrelated demand and production processes, both
critical features of modern manufacturing systems. We demonstrate that detailed distribu-
tional information on demand and production processes, which is incorporated into large

deviations asymptotics, is critical in inventory control decisions.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

We consider pricing and resource allocation decisions in communication and supply net-
works that can provide Quality of Service (QoS) guarantees. In general, such systems
exhibit strong stochasticity and are typically referred to as stochastic networks . Demand
for the communication services or for the products of supply chains are random. Packet
generation processes in the Internet are very bursty, while at various stages of a supply
chain, the capacities of production and distribution facilities could also change over time.
Recent developments have emphasized the importance of QoS. In communication networks,
the emergence of real-time traffic (e.g., Internet telephony, video conferencing, video-on-
demand) imposes rather stringent QoS requirements. In supply chains, increasing com-
petition has led to the desire to devise production/distribution policies that guarantee a
certain level of QoS. To adequately quantify QoS one needs to use performance metrics that
are hard to analyze. In communication networks, such metrics include the probabilities of
packet loss or delay, and the blocking probability of connection requests. In supply chains,
such metrics include the stockout probability or the probability of exceeding a promised
delivery time. The optimal allocation of available resources is an ageless problem that
has found increased importance in today’s competitive market environment. In this thesis,
we will focus into two instances of resource allocation problems in stochastic networks: (1)
pricing in multiservice communication networks, and (2) inventory control in supply chains.

In both cases the complexity of the problem will not allow us to pursue exact analysis.
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Instead, we will employ powerful asymptotic techniques to analyze the problems in well-
motivated limiting regimes. Based on our asymptotic results we will develop policies that

are efficient even away from the limiting regimes.

1.1.1 Pricing in Multiservice Communication Networks

The Internet is a worldwide network of computer networks that use a common communica-
tion protocol, TCP/IP . In the late 1960s, the Advanced Research Projects Administration
(ARPA), a division of the U.S. Defense Department, developed the ARPAnet to link to-
gether universities and high-tech defense contractors. In the mid-1980s, the National Science
Foundation (NSF) created the NSFNET in order to provide connectivity to its supercom-
puter centers and to provide other general services. The NSFNET evolved directly out of
ARPAnet and adopted the TCP/IP protocol to form a high-speed backbone for the de-
veloping Internet. Following that, the Internet grew rapidly, in terms of number of hosts,
number of users, traffic and also technology, and eventually NSF decided that its operation
could be more effectively administered by the private sector. In April 30, 1995 NSFNET
ceased operation as its NSF funding ended. Now traffic in the United States is carried on
several backbones operated by private, for-profit enterprises (see [MB98]). In this private
setting, pricing is becoming increasingly important as Internet service providers need to
develop efficient pricing schemes to recover costs and fund future expansions.

The most frequently used Internet applications are electronic mail (e-mail), file trans-
fer and remote login. However, the converging digital technologies of publishing, telephony,
television and computers are transforming the Internet into a unified integrated-service net-
work. Digital video, audio, and interactive multimedia communication services are growing
in popularity and have the potential to affect all sectors of society worldwide. The migration
to an integrated-service network will have important implications for market structure and
competition.

The current Internet offers a single service quality: “best effort” service. Packets are

transported first-come, first-served with no guarantee of success. Some packets may ex-
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perience severe delays, while others may be dropped and never arrive. However, different
streams of data place different demands on the network. E-mail and file transfer require
100% data integrity, but can tolerate delay. Real-time voice broadcasts typically require
higher bandwidth than file transfers, can only tolerate minor delays, but they can tolerate
significant distortion. Real-time video broadcasts have low tolerance for delay and distor-
tion. Because of different requirements, network efficiency can be increased if the different
types of traffic are treated differently.

Until recently. nearly all users faced the same pricing structure for using the Internet.
Local ISPs rent a fixed bandwidth connection from backbone ISPs and were charged an
annual fee, which allowed for unlimited usage up to physical maximum flow rate. The end
users were also charged a flat monthly fee for the Internet service provided by their local
ISPs. Without an incentive to economize on usage, congestion can become quite serious. If
everyone just stuck to ASCII e-mail congestion would not likely become a problem. However
the demand for multimedia services is growing dramatically. Although administratively
assigning different priorities to different types of traffic is appealing, it might be impractical
as a long-run solution to reducing congestion because of the usual inefficiency of rationing,
and because it is technically hard to implement.

An alternative approach for reducing congestion is overprovisioning. Overprovisioning
means maintaining sufficient network capacity to support the peak demands without no-
ticeable service degradation. This has been the most important mechanism used to date on
the Internet. However, overprovisioning is costly. Given the explosive growth in demand
and the long lead time needed to introduce new network infrastructure and protocols, the
Internet may face serious problems very soon. Therefore it is time to seriously examine
incentive-compatible allocation mechanisms, such as various forms of congestion pricing.
We believe that pricing of network services is becoming increasingly important in this new
environment. Apart from allowing providers to recover their operating expenses and fund
future capacity expansions, it can lead to more efficient use of the network resources by pro-

viding sufficient incentives to users. Perhaps more importantly, it enables the creation of
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a healthy market environment, where new network services can be (profitably) introduced
and sustained.

Pricing in communication networks has received a lot of attention in the literature.
MacKie-Mason and Varian [MMV94] proposed a “smart market” where individual packets
bid for transport while the network only serves packets with bids above a certain cutoft
amount, depending on the level of congestion. Kelly et al. [Kel97, KMT98] consider charges
that increase with either realized flow rate or with the “share” of the network consumed
by a traffic stream. Several researchers have looked at packet-based pricing schemes as
an incentive for more efficient flow control (see e.g., Gibbens and Kelly [GK99], La and
Apantharam [LAO0O], Kunniyur and Srikant [KS00]). Equilibrium properties of bandwidth
and buffer allocation schemes are analyzed by Low [Low00]. Clark [Cla97] proposes an
expected capacity-based pricing scheme where users are charged ahead of time on the basis
of the expectation that they have of network usage and excess packets are dropped at times
of congestion.

The emergence of real-time traffic substantially complicates the picture and requires
QoS measures much harder to analyze (see [Kel96, BPT98a, BPT98b, Pas99]). The net-
work model we will consider is more appropriate for real-time traffic that requires strict
Quality of Service (QoS) guarantees. Such guarantees can often be translated into a preset
resource amount that has to be allocated to a call at all links in its route through the
network. If the resource is bandwidth this resource amount can be some sort of an effective
bandwidth (see e.g., Kelly [Kel96] for a survey of effective bandwidth characterizations and
Paschalidis [Pas99] for similar notions in a multiclass setting). In this setting, Kelly [Kel94]
and Courcoubetis et al. [CKW97] propose the pricing of real-time traffic with QoS require-
ments, in terms of its effective bandwidth, and provide approximations that only involve
time and volume charges.

In this dissertation, we consider the pricing problem in a multi-service communication
network with fixed routing. We propose pricing strategies that aim at two distinct ob-

Jectives: either maximizing the revenue of the network operator or maximizing the social
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welfare of the users. For the case of revenue maximization, we have essentially a problem
of yield management, or revenue management . Yield management can be described as the
process of efficiently utilizing the limited available resources through pricing or other types
of actions. It is widely practiced in capacity-constrained service industries, such as airlines,
hotels and car rentals (see [SLD92, Ash97, BM95, Kim89a, Kim89b, CG95]).

Technically, the revenue maximization problem that we study is structurally similar to
the work in the revenue management of airlines (see, [SSL97, GvR97]). The latter problem
though is typically formulated as a finite horizon (e.g., [GvR97]), which is different than
infinite horizon average cost setup. Our work is also related to problems of admission control
in loss networks (see [Key90, OK92, Ros95, IS01]). This literature, however, assumes that
the prices are fixed and is only concerned with admission decisions, while we wish to study
optimal or near-optimal pricing schemes. Also, we use a decision-theoretic framework under
an explicit model of users’ reaction to prices (demand functions). Similar demand functions

have been used in [LV93] under a somewhat different model.

1.1.2 Inventory Control in Supply Chains

Our focus thus far has been on the technology, costs and pricing of the network transport.
However most of the value of the network is not in the transport, but in the value of the
information being transported. The advent of the Internet and the trend of globalization
radically transformed the manner in which business and supply chains are being managed
today. Manufacturing has recently gone through significant restructuring. A recent survey
[eco98] emphasized that “no factory is an island.” Companies are becoming more global.
They consist of factories, suppliers, distributors, and customer service centers scattered
around the world. As a result, modern manufacturing enterprises have recognized that
production can not be viewed separately from the physical distribution of goods. Instead,
both activities should be perceived as indispensable parts of a supply chain . Fortunately
for the U.S. and other industrialized countries, the higher-value parts of these new global

supply chains tend to stay within their borders. In these countries, it is becoming more
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important to manage supply chains, develop technology, and attend to customer needs;
labor intensive operations migrate to places where wages are smaller. At the same time,
the explosion of e-commerce has created a host of new companies that need to efficiently
manage inventory in supply chains.

An additional reason that led to this integrated view of manufacturing enterprises, but
also, a key defining characteristic of the new environment, is that manufacturing is becoming
more customer oriented. In an era of increased competition, customers are more demanding
and require products delivered in a timely manner wherever they happen to be located. In
addition to product functionality, companies are recognizing the significance of Quality
of Service (QoS) in acquiring and maintaining market share. E-commerce companies in
particular, have been more adept at adopting new practices and emphasizing QoS.

Our research objective is to develop effective policies for inventory control in supply
chains that address the difficulties present in the new manufacturing environment. The
fundamental trade-off in inventory control is between producing, which accumulates inven-
tory and incurs inventory costs, and idling, which leads to stockouts and unsatisfied demand.
A production policy resolves this trade-off and determines at each point in time whether the
production facilities at all stages of the supply chain should be producing or idling.

There is a large literature on production inventory systems (see Kapuscinski and Tayur
[KT99] for a survey). The single-stage, single-class, version of the problem is significantly
simpler. It has been shown in a variety of settings that a so called base-stock policy (pro-
duce when inventory falls below a certain level and idle otherwise) is optimal (see Evans
[Eva67], Gavish and Graves [GG80], Sobel [Sob82], Federgruen and Zipkin [FZ86], Akella
and Kumar [AK86], and Kapuchinski and Tayur [KT98]). In multiclass single-stage systems
the optimal policy is not in general known. In these systems a production policy involves
both idling and scheduling decisions (deciding on which classes to work on, if any). There
have only been results for special cases (Zheng and Zipkin [2Z90], Ha [Ha97], de Véricourt,
Karaesmen and Dallery [dVKDO0O0]) or approximations and heuristics for the general case

(Wein [Wei92], Pena-Perez and Zipkin [PPZ97], Veatch and Wein [VW96], Glasserman
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[Gla96], and Bertsimas and Paschalidis [BP01]). In a multiple-stage, single-class system,
and without capacity limits, Clark and Scarf in their seminal paper [CS60] have shown the
optimality of a production policy where each facility follows a base-stock policy based on
the total inventory available in the downstream facilities (we will refer to this as echelon
inventory). Their result has been generalized in several directions (Federgruen and Zipkin
[FZ84], Chen and Song [CSO01]). In the more general case where capacity limits exist and
demand and service processes are autocorrelated, such a policy is not necessarily optimal.
However the simplicity of its structure makes it attractive. Under a similar echelon policy
Glasserman and Tayur [GT95] proposed a perturbation analysis approach to compute the
hedging points in a capacitated single-class multi-stage system, and Glasserman [Gla97]
has developed asymptotics to approximate stockout probabilities under renewal demand

and constant production capacities.

1.2 Contributions

In this dissertation, we focus into two instances of resource allocation problems in stochastic
networks: (i) revenue or welfare maximization in QoS-capable communication networks, and
(ii) inventory control in supply chains subject to given QoS requirements. Because of the
complexity of the problems, analyzing them exactly is intractable. Instead, we employ

asymptotic techniques.

1.2.1 Pricing in Multiservice Communication Networks

We consider the pricing problem in a multi-service communication network with fixed rout-
ing. Different classes differ in bandwidth requirements, demand pattern, call duration, and
routing. Links in the network have given finite capacities and the total resource requirement
of all calls using a link cannot exceed the link’s capacity. The network charges a fee per

call which can depend on the current congestion level, and which affects user’s demand for

calls.
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Our work is closer to Paschalidis and Tsitsiklis [PT00] that considered pricing of mul-
tiple services sharing a single resource. The single-link problem can be formulated as an
infinite horizon, average reward dynamic programming (DP) problem. But for large-scale
problems, i.e., when the system has many resources and provides multiple classes of services,
solving the DP numerically becomes impractical. We develop a number of approximation
approaches, such as price aggregation and approximate DP, by which we can obtain sub-
optimal dynamic pricing policies. Furthermore. we generalize the main result of [PT00] in
a network setting. In particular, we show that in a limiting regime of “many small users,”
laws of large number take effect and a simple static pricing scheme is asymptotically opti-
mal. That is, under stationarity assumptions, prices can remain fixed (distinct for various
classes) and it is not necessary to employ a dynamic scheme according to which prices
depend on the current congestion level. If demand is nonstationary and is characterized
by time-of-day effects, which is widely agreed to be the case in communication networks,
the proposed pricing scheme leads to time-of-day pricing. The “many small users” limit-
ing regime we consider is quite appropriate for large networks such as the Internet where
(backbone) capacities are large and individual sessions or calls occupy a small fraction of
those capacities.

A static pricing scheme, such as the one we propose, has obvious implementation ad-
vantages: charges are predictable by users, evolve in a slower time-scale than congestion
phenomena, and no elaborate real-time mechanism is needed to communicate prices to the
users. Moreover, as we will see, prices can be computed in large-scale systems, which is
not the case with the optimal dynamic pricing scheme. To that end, from our asymptotic
optimality results we first identify an insightful, asymptotically optimal, structure of static
prices under both revenue and welfare maximization objectives. According to this structure
prices depend on a parsimonious number of parameters. We then employ a simulation-
based optimization technique to tune those parameters. We report results from a number
of numerical experiments, including, a large-scale one, indicating that this approach yields

near-optimal policies.
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We characterize the rate at which a static pricing policy converges to optimal in the
regime of many small users. This allows us to obtain bounds on the suboptimality gap of
static pricing away from the limiting regime. We provide examples where such bounds are
useful in quickly assessing efficiency gains achieved by appropriately scaling the system.

We also investigate demand substitution effects. Namely, when the price for one class
of service is too high, some of its customers may choose another classes as an non-perfect
alternative. Hence, the price of a service will affect not only its own demand, but also
demand for other services. Courcoubetis and Reiman [CR99] discuss calculating an optimal
static pricing policy in the limiting regime of “many small users” in a single link system with
substitution effects. We substantially extend their framework in a network setting, and show
that in the limiting regime of many small users, an appropriate static pricing policy will be
asymptotically optimal for both revenue and welfare maximization problems. Furthermore,
the prices have a similar structure with the simpler case that does not take substitution
effects into account. A simulation-based optimization approach is again applicable to tune
those parameters and yield near-optimal policies.

The network model we propose is general enough to accommodate several situations of
practical interest. It can be seen as modeling the pricing of bandwidth by a network provider
who offers a menu of services to users. Users can in fact also be smaller “retail” providers,
in which case calls can be seen as virtual circuits leased from the backbone provider. The
model can also be seen as pricing the use of Web or other servers by an application service
provider: a “call” is associated with a transaction that requires cooperation from a series

of servers, thus, it ties up a fraction of their capacities until it is completed.

1.2.2 Inventory Control in Supply Chains

As for the inventory control in supply chain management, we propose and analyze two
base-stock production policies. Qur first policy uses only local inventory information at
each stage of the supply chain. Our second policy has similar structure to the policy pro-

posed by Clark and Scarf [CS60], that is, each stage makes decisions based on the total
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downstream inventory (echelon inventory). In both cases, we introduce constraints that en-
sure that stockout probabilities stay bounded below given desirable levels. Such service-level
constraints provide a more natural representation of customer satisfaction and are closely
watched by manufacturing managers. This is in contrast to most of the work in the literature
that considers policies minimizing expected linear inventory and backorder costs. Our anal-
ysis is general enough to accommodate dependencies in demand and production processes.
In practice, demand for various products might have strong correlations with a variety of
phenomena such as: sales events, weather patterns, state of the economy, etc. Moreover,
manufacturing facilities are stochastic and failure-prone, which creates dependencies in the
production process. Under such assumptions, analyzing stockout probabilities exactly is
intractable. We instead rely upon large deviations techniques that lead to asymptotically
tight approximations. As a result, we are able to analytically obtain the appropriate base-
stock levels for both policies we consider. Related techniques have been recently used by
Bertsimas and Paschalidis [BPO01] to devise production policies in a multiclass, single-stage
setting. Approximation techniques of this type, but in the simpler case of renewal demand
and production processes, have been introduced by Glasserman [Gla96, Gla97].

On the technical front, we have been able to use the full power of large deviations
techniques to accommodate temporal dependencies in the demand and production processes.
Our results are “network” large deviations results (tandem queues in particular). Such
results have only been obtained in limited network cases, as in Bertsimas, Paschalidis, and
Tsitsiklis [BPT98b] which we use in the case of local inventory information. Our echelon
inventory results take into account the strong coupling between different stages of the supply
chain and, to the best of our knowledge, are the first of such “network” results to do so in the
presence of stochastic and autocorrelated demand and production processes. It should be
noted that stochastic production processes suffice to complicate the picture (see [BPT98b]
on how the character of the departure process from a G/D/1 is significantly altered by
introducing stochasticity in the service process). Our echelon inventory main result has

an interesting interpretation: it identifies a bottleneck stage whose production capacity is

10
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“responsible” for stockouts at stage 1. But this bottleneck stage is not necessarily the one
with the smallest mean capacity; it is determined by more detailed distributional information
on all stochastic processes involved. In this sense, such distributional information is critical
in making inventory control decisions.

Our numerical results demonstrate that the large deviations asymptotics are accurate
in a wide range of desired stockout probabilities, including relatively large ones. Key to
this are some heuristics we propose to compute a prefactor in front of the large deviations

exponential.

1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follows:

In Section 1.4, we provide some background knowledge on dynamic programming and
large deviations analysis. We will use these mathematical tools in the subsequent chapters.

In Chapter 2, we focus on pricing for a single resource and formulate the problems of
maximizing revenue and social welfare as a dynamic programming problem. We derive
properties of the optimal dynamic policy and provide an upper bound on the optimal
performance. We develop an approximate dynamic programming approach for solving large
problems efficiently. We also introduce the static pricing, a suboptimal policy.

In Chapter 3, we consider the pricing problem for fixed-routing multi-service commu-
nication networks and show that static pricing is asymptotically optimal in a regime of
many small users. For both revenue and welfare maximization objectives we characterize
the structure of the asymptotically optimal static prices. We employ a simulation-based
approach to compute an effective policy away from the limiting regime. The approach can
handle large realistic, instances of the problem. Illustrative numerical results are reported
at the end of the chapter.

In Chapter 4 we extend the model we have considered in Chapter 3 to incorporate

demand substitution effects. Our main results extend to this situation as well. Following

11
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the development of Chapter 3, we develop an upper bound on the optimal performance,
establish the asymptotic optimality of static pricing, and characterize the structure of the
asymptotically optimal static policy. In the end of the chapter, we discuss the asymptotic
optimality of static policy for welfare maximization problems with demand substitution
effects.

We start the discussion on supply chain management with the single-stage inventory
control problem in Chapter 5. We present our model and obtain the large deviations
approximations on the stockout probability and the inventory cost, which are building
blocks for analyzing multi-stage problems.

In Chapter 6, we consider multi-stage supply chains under a base-stock policy. Each
stage has local inventory information only and we want to satisfy the service-level constraint
on the finished goods of the supply chains, i.e., maintaining stockout probabilities at var-
ious stages below given thresholds. We propose a decomposition approach based on large
deviations approximations and the results we obtained for single-stage system.

The policy obtained via the decomposition approach, although it maintains the service-
level constraint at stage 1, might not necessarily be efficient in terms of expected inventory
cost. Information of inventory availability in other stages might lead to lower such cost
by giving the opportunity to trade-off inventory between different stages. i.e., lower the
required safety stock in stages where inventory; costs are high and compensate by increasing
the safety stock in stages where costs are lower. In Chapter 7 we consider such a situation
where each stage has knowledge of the total downstream inventory. We implement a so-
called echelon base-stock policy. We analyze the supply chain under this policy using large
deviations techniques and devise a production policy that minimizes expected inventory
costs subject to given service-level constraints. We also discuss extensions to multiclass
supply chains. Numerical results for both decomposition approach and the multi-echelon
approach are presented at the end of this chapter.

Summary and directions for future research are in Chapter 8.

12
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1.4 Preliminaries

In this section, we provide some background knowledge on the mathematical tools we will be
using throughout the thesis, including dynamic programming ([Ber95]) and large deviations
analysis ([DZ98, Buc90, SW95, DE97]). On dynamic programming, we discuss infinite
horizon, average reward problems and the uniformization of continuous-time Markov chains.

We also review some basic results on large deviations, which will also help in establishing

some of our notation.

1.4.1 Dynamic Programming
Infinite Horizon Problems with Average Reward Per Stage

For infinite horizon dynamic programming problems, if the reward per stage is discounted
or the system eventually enters a reward-free termination state, the optimal total expected
reward will be finite. However in many situations. discounting is inappropriate and there
is no natural reward-free termination state. In such situations it is often meaningful to
optimize the average reward per stage.

On a notational remark, we will be denoting all vectors using boldface and assume
that they are column vectors unless otherwise explicitly specified. For example, we will be
writing x = (z1,...,Z,;,) to identify the elements of a vector x € R™.

The average reward per stage starting from a state ¢ under policy 7 in an infinite horizon

problem is defined by

N-1
Iz (1) 'l—E [Z 9(Xk, pr(xk)) | X0 = ’L] , t=1Ll...,mn, (11)

= lim
Noocc N k=0
where x; and pi(xi) are the state and the decision of policy 7 at time k, and gi(-) is
the corresponding immediate reward at time k. We will discuss the maximization problem

in what follows; the minimization problem can be handled essentially the same way. The

results in this section can be proved under the following assumption.
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Assumption A
One of the states, by convention state n, is such that for some integer m > 0, and for all

initial states and all policies, n, is visited with positive probability at least once within the

first m stages.

Assumption A can be shown to be equivalent to the assumption that the special state

n is recurrent in the Markov chain corresponding to each stationary policy (see [Ber95]).
Proposition 1.4.1 Under Assumption A. the following hold for the average reward per
stage problem:

1. The optimal average reward J* ts the same for all initial states.

2. Bellman’s equation takes the form

J*+ k(i) = max | g(i.u) + Y _pj(wh () |, i=1,...,n (1.2)
=1

m
u€l(z)

where J* is the optimal average reward per stage, U(i) is the control space at state
i, h*(i) is the relative or differential reward for state i, and for the special state m,

h*(n) =0.

3. If a scalar J and a vector h = (h(1),..., h(n)) satisfy the Bellman equation in (1.2),

then J is the average optimal reward per stage for each initial state i:
J = m;a.xJ,r(i) =J(), i=1,....n.

In addition, out of all vectors h satisfying this equation, there is a unique vector for
which h(n) = 0. Furthermore, if u*(i) attains the mazimum in Equation (1.2) for

each i, the stationary policy p* is optimal, i.e., J,- (i) = J for all i.

The computational methods for solving the average reward per stage problems include
value iteration, policy iteration, linear programming, and suboptimal approaches such as

adaptive aggregations. We provide an introduction to value iteration.

14
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The most natural version of the value iteration method for the average reward problem
is simply to select arbitrarily a terminal reward function, say Jy, and to generate successively
the corresponding optimal k-stage reward Ji(i), £ = 1,2,... This can be done by executing

the DP algorithm starting with Jp, i.e., by using the recursion

n
Ji1 () = max g(i,u)+;pij(u).fk(j) . i=l....n.

The k-stage average reward Ji(i)/k will converge to the optimal average reward per stage

J* as k — oo, that is,
lim Je(d) _

koo k I

The value iteration method above is simple and straightforward, but typically Ji diverges
to oo or —oc, which makes the calculation of limg_ o0 Ji(7)/k numerically cumbersome.
Also this method will not provide us with a corresponding differential reward vector h*. To
bypass those difficulties, we can consider an alternative algorithm, known as relative value

iteration:

n
hi1(2) = Jmax, g(z,u) + ;Pij(u)hk(j)

- ' (whe(F) ), i=1,....,n, (13
max g(s,u)+]_z=‘1ps,(u) @) ), i=lon (13)

where s is some fixed state. Under Assumption A, it can be shown that the iterates h(7)

generated by (1.3) are bounded. If the iteration converges to some vector h, then we have

n
J +h(i) = max | g(i,u) +j§=jlp,-j(u)hk(y) :

and

J = o g(s,u) + j;?sj(u)hk(J)

15
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By Proposition 1.4.1(3), this implies that J is the optimal average reward per stage for all

initial states, and h is an associated relative reward vector.

Uniformization of a Continuous-time Markov Chain

For a continuous-time system with a finite number of states, we assume the time interval
T between the transition to state ¢ and the transition to the next state is exponentially

distributed with parameter v;(u), i.e.,
Plr <t|iu] =1 —e %Mt

and 7 is independent of earlier transition times, states, and controls. The transition prob-
abilities are p;;(u), ¢ # j. The parameter v;(u) is referred to as the rate of transition
associated with state 7 and control u, and is uniformly bounded in the sense that for some

v we have

vi(u) < v, foralli,uelU(z).

The average transition time associated with state i and control u is E{7] = (1u) . The
state and control at any time ¢ are denoted by x(¢) and u(t), respectively, and stay constant
between transitions. We use following notation:

tx: The time of occurrence of the kth transition. By convention, we denote tg = 0.

T = tg — tg—1: The kth transition time interval.

Xk = X(tr): We have x(t) = xi for tx <t < tg4).

u; = u(t;): We have u(t) = uy for ¢ <t < tgig-

We consider an average reward function of the form

J= lim ~E [/Tg(x(t),u(z))dtJ = lim —E [/t‘v g(x(t),u(t))dt],
0 0

Tooc T Nooo by

where g is a given reward function. Similar to discrete-time problems, a policy is a sequence

m = {po, 41,- - - }, where each p is a function mapping states to controls with u; € U(z) for
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all states z. Under w, the control applied in the interval [ti,tx+1) is pi(xk). The average

reward for policy  is given by

1 Nol et
Je(xo) = Jim LB [Z/ 0 (e () xo=i], i=loon (L)

N-ooc ty P

In general, the transition rate v;(u) depends on the state and the control, but we can
convert them to a uniform transition rate by allowing fictitious transitions from a state to
itself. Let v be a new uniform transition rate with v;(u) < v for all = and u, and define new

transition probabilities by

wluly, (u), ifi# 7,

1-— U‘f,u)x

pij(u) =
ifi=7.

We can convert a continuous-time Markov chain problem with transition rate v;(u), transi-
tion probabilities p;;(u), and the average reward in (1.4) into a discrete-time Markov chain

problem with a uniform transition rate v, transition probabilities p;j(u), the reward per

stage
g(i, u)

g(i.u) =

and the average reward per stage as in (1.1).

1.4.2 Large Deviations

Consider a sequence of i.i.d. random variables X;, i > 1, with mean E[X,] = X. The strong
law of large numbers asserts that ;‘ninl—\l converges to X, as n — oo, with probability 1
(w.p.1). Thus, for large n the event Y.», X; > na, where a > X, (or 31—, X; < na, for
a < X) is a rare event. More specifically, its probability behaves as e~""(%), as n — oo, where
the function r(-) determines the rate at which the probability of this event is diminishing.

Cramér’s theorem [Cra38] determines r(-), and is considered the first Large Deviations
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statement. In particular,

r(a) = sgp (0a — log E[eo’\"]) .

For random variables, Gartner-Ellis Theorem (see [Buc90] and [DZ98]) establishes a
Large Deuviations Principle (LDP), which is a generalization of Cramér’s theorem. Consider

a sequence {S1,Ss,...} of random variables, with values in R and define
An(6) & %ng[e"Sn]. (1.5)

For the applications we have in mind, S, is a partial sum process. Namely, S, = >_7_, Xi,
where X;, ¢ > 1, are identically distributed, possible dependent, random variables. Let
{S.} satisfy the following assumption.

Assumption B
1. The limit
AL — him L 0Sn
A(B) = nli»ngo A (6) = nlggg - log E[e”~"] (1.6)

exists for all 0, where oo are allowed both as elements of the sequence A, (6) and as

limit points.
2. The origin is in the interior of domain Dy £ {6 | A(8) < oo} of A(6).

3. A(0) is differentiable in the interior of Dy and the derivative tends to infinity as 0

approaches the boundary of Dy .
4. A(6) is lower semicontinuous, i.e., liminfg, 9 A(6,) > A(8), for all 6.

We will refer to A(-) as the limiting log-moment generating function. Let us also define
A*(a) £ sup(fa — A(6)), (1.7)
0

which will be referred to as the large deviation rate function.

Theorem 1.4.2 (Gartner-Ellis) Under Assumption B, the following inequalities hold

18
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Upper Bound: For every closed set F

. 1 Sn .
—_ —_ < — * R
llmsup lOgP [ € F] inf A (a)

n—oo

Lower Bound: For every open set G

linrr_xﬁi)rcxfélogP [% € G] > —igg./\'(a).

We say that {S, } satisfies a LDP with good rate function A*(-). The term “good” refers
to the fact that the level sets {a | A*(a) < k} are compact for all £ < oc, which is a
consequence of Assumption B (see [DZ98] for a proof). LDP is satisfied by many general
processes, such as renewal processes, Markov-modulated processes, and stationary processes
with mild mixing conditions (see [DZ95] and [Cha95]), that are widely used in modeling
traffic in communications networks, manufacturing systems and other areas.

The Gartner-Ellis Theorem (Theorem 1.4.2) intuitively asserts that for large enough n
and for small € > 0

P[S, € (na — ne.na + ne)] ~ eV (@), (1.8)

This can be viewed as an extension of Cramér’s theorem to autocorrelated stochastic pro-
cesses. The notation “~” should be interpreted as “asymptotically behaves™: more rigor-
ously, the logarithm of the probability divided by n converges to —A*(a). as n — oc.

It is important to note that A(:) and A*(-) are convex duals (Legendre transforms of

each other)[DZ98]. Namely, along with (1.7), it also holds
A(8) = sup(fa — A"(a)). (1.9)

In the sequel, we are also estimating the tail probabilities of the form P[S, < na] or

P[S, > na]. We therefore define large deviations rate functions associated with such tail

n

probabilities. Consider the case where S, = Y 7, X;, the random variables X;, ¢ > 1,

being identically distributed, and let m = E[X;]. It is easily shown (see Dembo and
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Zeitouni [DZ98]) that A*(m) = 0. Let us now define

A*(a) ifa>m

A"t (a) & (1.10)
0 ifa<m
and
A* ifa<m
A (a) & () (1.11)
0 if a > m.

Notice that A**(a) is non-decreasing and A*~(a) is non-increasing function of a, respec-

tively. The convex duals of these functions are

At & AB) if6>0 (112)

+oc if8 <0

A~ (6) & A@) if8<0 (1.13)
/ = X
+oc if0 >0

respectively. In particular, A*~(a) = supg(fa — A~ (0)) and A**(a) = supy(fa — A*(6)).
Using the Gartner-Ellis Theorem it can be shown that for all €;,€2 > 0 there exists ng

such that for all n > ng

e n(MT(@)re2) < PIS, < na] < eTHATT (@), (1.14)

and

e~ (AT (@)re2) < PIS, > na] < e”MA T @)m), (1.15)

On a notational remark, in the sequel we will be denoting by

J
S52yN X,  i<i, (1.16)
k=1

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the partial sums of the random sequence {X;; i € Z}. We will be also denoting by A x(-) and
A% (-) the limiting log-moment generating function and the large deviations rate function,

respectively, of the process X.
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Chapter 2

Pricing in Communication Systems:

Single-Link Case

In this chapter, we consider the pricing problem for multi-service communication systems.
We focus on the single resource case and formulate the problem as a dynamic programming
problem. We derive properties of the optimal dynamic policy and provide an upper bound
on the optimal performance. We propose an approximate dynamic programming approach
for solving large problems efficiently. We also introduce static pricing, a suboptimal policy.

Our analysis can also be applied to welfare maximization problems.

2.1 Problem Formulation

In this section, we introduce a detailed model for the operation of the single resource. We
adopt a model that has been introduced in {PT00]. We assume that the link provides M
classes of service to its customers and has a total capacity C. Each call of class ¢ pays
a fee of u; upon arrival, and the arrival processes of all classes are Poisson. We assume
the arrival rate of class 7 calls is a known function of price u;, which will be referred to
as the demand function and denoted by A;(u;). We will write u = (u;,...,uar) and A =
(Ar(ui)s---, Apr(uar)). We will be making the following assumption for demand functions.
Assumption C

For every i = 1,..., M, Ai(v;) > 0, and there exists a price u; max beyond which X\;(u;)

becomes zero. Furthermore, the function A;(u;) is continuous and strictly decreasing in the
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range u; € [0, %; max]-

Due to this assumption, the demand is at its peak when prices are zero. We will use
Ao = (AL0s--->Aar0) £ A(0) to denote the peak demand vector, where O is the vector of

all zeroes.

A customer of class ¢ requires r; units of bandwidth and stays in the system for an

Let n;(t) be the number of customers of class i being connected at time t. We will
make the convention that n;(t) is a right-continuous function of time. The state of system
at time t can be identified by the vector of n;(t), i = 1,..., M, which is denoted by
n(t) = (ni(t),...,na(t)). A request of class ¢ can be accepted only if there is sufficient

bandwidth to accommodate it, that is,
r'(n(t) +e;) <C,

where prime denotes the transpose, and e; is the ith unit vector, namely, a vector with
all its components zero except the ith component which is equal to one. Otherwise, the
customer will be informed that the service is unavailable for now and the request will be

lost. The state space for the problem is
S&{n|rn<C}.

A pricing policy is a rule that determines the pricing vector u(t) = (u(t),...,ux(t)) at
any time t as a function of the state n(t). Under the assumptions put in place, for any given
pricing policy the system evolves as a continuous-time Markov chain with state n(t) € S.
We are interested in pricing policies for two distinct objectives: revenue maximization and

social welfare maximization.
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2.1.1 Revenue Maximization Problem

Let us fix a pricing policy u(t). Assuming that there is enough bandwidth to accept a class
t call, the instantaneous expected revenue rate from those calls is A;(u;(t))u;(t), since class
1 arrivals are Poisson with rate \;(u;(¢)). If there is not sufficient bandwidth to accept class
t calls we can, without loss of generality, set u;(t) = u; max and bring the instantaneous

expected revenue rate to zero. Thus, the total expected long-term average revenue is given

by

M T T
J = lim %S:IE[ /0 Ai(ui(t))u,-(t)dt] = lim_ %E [ /0 z\(u(t))’u(t)dt]. (2.1)

The above limit is easily seen to exist for any pricing policy, because the state n = 0,

corresponding to an empty system, is recurrent.

2.1.2 Welfare Maximization Problem

To formulate the welfare maximization problem, we will interpret the demand model as
follows. Potential calls of class i are generated according to a Poisson process with constant
rate A; 9. which is the peak arrival rate of class ¢ introduced earlier. A potential call of
class i, if it goes through, results in a user utility of U;, where U; is a non-negative random
variable taking values in the range [0, uimax]- Let fi(u;) be the continuous probability
density function of U;. We assume that a potential class ¢ call decides to join the system
if and only if the utility it will extract, U;, exceeds the prevailing price u;. This implies
that class ¢ calls are realized according to a randomly modulated Poisson process with rate
Ai{ui(t)) = XMioP[U; > u;(t)]. Furthermore, the expected utility conditioned on the fact
that a call has been established, under a current price of u; is equal to E[U; | U; > u;].

Hence, the expected long-term average rate at which utility is generated is given by

1 A T
lim T E [</o Ai(ui(t)E[U; | Ui > ui(t)]dt] . (2.2)

T-—o0 .
i=1
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This is an objective of exactly the same form as in the case of revenue maximization, except
that the instantaneous revenue rate A;(u;)u; of class 7 is replaced by A;(u;)E[U; | U; > ui(t)].
Thus, the two problems can be treated using the same set of tools. According to the utility

assumptions put in place we have:
Ui, max
Ai(u) = /\i,O/ fi(v)dv.
u;

and

Ai(w)BU; | U; > u;) = /\i,o/ o v fi(v)dv.

Example: Suppose that the utility derived from a call of class ¢ is uniformly distributed

in the range [0, u; max]- Then the demand function of class ¢ is

ws
Ai(u) = Aig (1 - — ) ,

Ui, max
and

Ui + Ui max

E[Ui | U; > ui] = >

2.2 Optimal Dynamic Policy

In this section, we show how to obtain an optimal pricing policy using dynamic program-
ming, under both objectives of revenue and welfare maximization. We derive some prop-
erties of the optimal policies. We first consider the revenue maximization problem, then

comment on the corresponding results for the welfare maximization.

2.2.1 Dynamic Programming Formulation

Let C(n) be the set of classes whose calls are lost at state n, thus

Cn)={i|r'(n+e)>C, i=1,...,M}.
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Our objective is to find an optimal pricing strategy that maximizes the expected revenue of
the firm over an infinite horizon, that is maximize the expression in Equation (2.1). From

Assumption C, the control space for the problem is

u é {ului € [Oaui.ma.xL 1= 17"*:M}'

Using the uniformization technique for continuous-time Markov chain, we obtain the

Bellman equation for the revenue maximization problem

M M M
. _ Ai il
J* + h(n) = max gl it + ; ;h(n+ei)+iz=:lTh(n—ei)
igC(n) i€C(n) (2.3)
Mo o
+11- = - 2| h(n)], nesS,
g > ; | h(n)
i€C(n)

where v = Z;\z{l (/\i,o + p; [;‘%D

For simplicity, we use H(n,u) to denote the expected revenue rate at state n under
price u. And we define the dynamic programming operator 7T as follows: for any function
[, (T f)(n) is defined to be equal to the right-hand side of Equation (2.3), with h replaced

by f. In particular, Equation (2.3) can be written as
J* + h(n) = max H(n,u) = (Th)(n), nesS. (2.4)
u

The optimal solution to the problem is the solution of the system of nonlinear equations
in (2.4). However, the computational complexity increases with the size of the state space,
which is exponential in the number of classes M. For multi-class problem with large capacity
C. it is impractical to find the optimal price of each class by either solving the system of
nonlinear equations directly or using standard techniques such as value iteration and policy
iteration (see [Ber95]). To overcome the difficulty, we will examine alternative approaches

in the following sections.
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2.2.2 Some General Properties

We present some properties of the optimal dynamic policy. The first result establishes the
monotonicity of the relative rewards. It corresponds to the intuitive fact that it is always
more desirable to have more free resources, as they lead to additional revenue generating

opportunities in the future (see [PT00] for the proof).

Theorem 2.2.1 (Monotonicity of A(n), [PT00]) For all i and all n such that r'(n +

e;) < C. we have h(n) > h(n + e;), where e; denotes the ith unit vector.

Theorem 2.2.2 (The infinite bandwidth case, [PT00]) If there are no capacity con-

straints (C = oc), the optimal revenue ts given by

M
Joo = max > Ailui)us.
ueld =1

and the optimal price vector is some constant U that does not depend on the state n.

Furthermore, we have J* < J.

We now show that resource limitations always result in higher prices in comparison to

the unconstrained case.

Theorem 2.2.3 ([PT00]) There ezists an optimal policy u* such that for every state n,

we have u*(n) > Uy

Proof: Fix some state n. From the Bellman equation, we see that for all ¢ ¢ C(n), an

optimal price u](n) can be chosen by maximizing

Ailug)u; + éIE/LI)UI.(II +e;) — h(n))

Consider a value of u; which is less than the ith component u; oo of us. Then, A;(u;)u; <
Ai(%io0)Uioc, Dy the definition of u; . By Theorem 2.2.1, we have h(n + e;) — h(n) < 0.

Also, by monotonicity of the demand function, we have \;(u;) > Ai(ui,o0)- Using all of the
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above inequalities, we obtain

Ai (i Ai(uq
Mo + 25 (h(n 4 ) — () < AsCuiooti e + 2852 (h(n 1 e) = h(w)).
This implies that u; cannot be strictly better than u; , and proves the result. |

2.2.3 Welfare Maximization Case

The case of welfare maximization, can be treated similarly. Bellman equation remains the
same, except that the reward rate A(u)'u is replaced by 3, Ai(u:)E[U; | Ui > uw;]. Asin
Theorem 2.2.1, the relative rewards h(n) are again monotonically non-increasing in n. If
the bandwidth is infinite, welfare is maximized by admitting every user, and the optimal
price u.. is equal to zero. For a finite capacity network, the optimal prices are non-negative,

which provides a trivial extension of Theorem 2.2.3.

2.3 Static Pricing Policy

The optimal dynamic policy has a number of drawbacks: it (i) is computationally hard to
obtain, (ii) leads to prices that fluctuate in a very short time scale, which is inconvenient
for customers since they prefer to predict their cost in advance, and (iii) requires imple-
menting an elaborate feedback mechanism to communicate prices to users. In this section,
we introduce a suboptimal policy, to be called static pricing strategy and develop methods

to obtain an optimal static price.

We define static pricing to be the policy that keeps the price constant and independent

of the level of congestion, i.e.,

U(t)=(’ll.1,...,’lz1w)=u’ Vn €S.
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Therefore the demand function is also constant,
A(u(t)) = (A(ur),--- 5 Aar(uar)).

Under the constant demand, for each class of service, there exist some states where the
system does not have enough resources to accept a new request of this class; then the
request is blocked. Let m(n) be the steady-state probability of state m, ) s7(n) = 1.

The blocking probability of service ¢ is given by

Ploss(w) = D w(n).

nES
1€C(n)

We are interested in obtaining the best static pricing policy. The average revenue under

price u is

M
J(u) = Z Afui)ui (1 = Plo(u)) .

=1
By solving the following nonlinear programming problem, we obtain an optimal static price

and corresponding revenue rate,

M

J = ma.xz A(Uz Uz loss(u))

We need to calculate the blocking probabilities in each iteration of the nonlinear optimiza-
tion algorithm, which is computationally expensive. The following algorithm from [Ros95]

determines the blocking probability for each class of service.

Algorithm 2.3.1 Recursive algorithm to calculate the blocking probabilities P}, _(u):
1. Set g(0) =1 and g(c) =0, for c <0;

2. Fore=1,...,C, set
M

o) = 3 Soryte -y,

=1

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. Set

C
G =Y glo);
c=0
4. Forc=0,...,C, set
c
ale) = 22,
5. Fori=1,... , M, set
C
loss = Z g(c).
c=C—-r;+1

The computational complexity of Algorithm 2.3.1 is O(CM), that is, linear in the size
parameters. But g(c) increases geometrically with respect to \;’s, so for a large system
where the arrival rates are large, the algorithm would encounter numerical problems such
as overflow.

Table 2.1 lists the numerical results for a two-class system with linear demand function:
Ai(ui) = Aip — Ai1uq, ¢ = 1,2. J* is the optimal revenue rate, Js is the revenue rate of
optimal static policy. Note that p; and p» in Table 2.1 can be interpreted as the potential

load of the two classes on the link.

DL,O At | ot 2 ,“ATL/OJ Ao | A1 | p2 2 ”:‘Cz’/o,.:, J* Js
40.0 | 4.0 1.032 350.0 | 35.0 1.129 952.63 | 945.79
40.0 | 4.0 1.032 500.0 | 50.0 1.613 1281.65 | 1270.4
80.0 | 8.0 2.064 350.0 | 35.0 1.129 977.28 | 965.33
80.0 | 8.0 2.064 500.0 | 50.0 1.613 1288.97 | 1273.9
160.0 | 16.0 4.128 1280.0 | 128.0 4.129 2235.13 | 2206.1
320.0 | 32.0 8.256 2560.0 | 256.0 8.258 2613.36 | 2588.9
640.0 | 64.0 16.512 5120.0 | 512.0 16.516 2820.47 | 2804.1

Table 2.1: Numerical results of the optimal static policy for the two-class
problem (C =135, 1y =4, r2 =1, u1 =1, o = 2).
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2.4 Price Aggregation Approach for Single-class Case

An alternative approach is solving the DP by linear programming (see [Ber95]). The optimal

solution, J*, of the DP solves the following linear programming (LP) problem,

min J (2.5)
J.h(n)

s.t. J+h(n) > H(n,u}) forallmeSand ueld,

where H, defined in (2.4), denotes the expected revenue rate at a given state n and price u.
Unfortunately, for a system with large capacity, the dimension and the number of constraints
of this program can be very large and its solution can be computationally impractical. We
propose a price aggregation approach, which is suboptimal, for the single-class case.
Consider a single-class problem where the state space is S = {0,...,C} and the control

space is U = [0, umax]- We can formulate the following LP problem,

min J (2.6)
Jh(n)

s.t. J > Au)u + A(u)h(l) — A(u)h(0), Vevel
J > Auw)u + Au)h(n + 1) + nph(n — 1) — (AM(u) + np)h(n), 0<n<CVueld

J > Cuh(C —1) —Cuh(C), VYu€el.

The dual problem is

Cc-1

max Z Z g(n,u)A(u)u (2.7)

q(n.u) n=0 ucld
st Y (q(0,u)A(u) — q(L,u)p) =0
ueU
Y (aln — L, u)A(u) — g(n,u)(A(u) + np) + g(n + Lu)(n+1)u) =0, 0<n<C
ueld

3 (@(C - 1,u)A\(w) - ¢(Cu)Cp) =0
ueld
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C
YD anu)=1

n=0ucld
g(n,u) >0, n=0,...,C, u€elU,

where q(n,u) can be interpreted the steady-state probability of state n under price .

Theorem 2.4.1 The optimal solution to the dual problem in (2.7) s

T ifu=u"(n
q(n,u) = n ") (2.8)
0 otheruwise,

where u*(-) is the optimal dynamic policy and 7, is the steady-state probability of state n

under this policy.

Proof: It can be seen that u*(C) = umax, so that A(u*(C)) = 0. Let 7, be the steady-state

probability of state n under the optimal policy, where 7, > 0 and

(o4
Zﬂ’n = 1.

n=0

The optimal revenue rate is

C Cc-1
I =3 maA(ut(n))ut(n) = Y maA(ut(n)u”(n),
n=0 n=0

which is also the optimal value of the LP problem in (2.6).
Note that g(n,u) given by Equation (2.8) is a feasible solution to the dual problem
(2.7), since the constraints become the detailed balance equations of the Markov chain that

governs the evolution of the system. The corresponding cost is given by

C-1 Cc—-1
Z Z g(n,u)A(u)u = Z A (u*(n))u*(n) = J°.

n=0 ucld n=0

From the strong duality theorem, we conclude that Equation (2.8) is the optimal solution
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to the dual problem (2.7). [

To address the computational problems associated with large scale problems, we dis-
cretize u into L intervals (ag, ay). (a1, @2), ..., (ar_1.ar), where ag =0, ap < --- < o,
and af = umax. Note that for any state n and price interval U; = (a;-1,a5), j=1,....L,
we define §(n, j) £ Eueu, q(n, u) as the total steady-state probability of state n under price

in the interval U;. By the monotonicity of A(-), we obtain

d(n. 5)Mas) < D aln,u)A(u) < §(n, j)A(aj-1), (2.9)
uEUj

Using the above inequality, we can aggregate the constraints of problem (2.7) over u, and

obtain the following LP problem,

CcC-1 L
max D d(n, HA(ejo1)ey (2.10)
q(n.j) n=0j=1
L
st. > (q(0,5)Mey) — g(1,5)p) <0

-
Il
—

(4(0. 5)Maj-1) — ¢(1,5)1) =0

I

-
I
—

(G(n — 1,7)Mey) + G(n + 1,5)(n + 1)p — §(n, ) (Maj—1) +np)) <0,0<n< C

M-

<
1
—

(a(n — L)Mej—1) +4(n + 1,j)(n + 1)p — §(n, 5)(Mey) +np)) 20,0<n < C

M-

<
1l
~

(4(C - 1,5)A(a;) — 4(C,j)Cr) <0

M=

<.
I
-

(4(C - 1,5)Ma;-1) — 4(C,5)Cr) 20

M=

Jj=1

C L

YD dn.g) =1
n=0j=1

g(n,j) 20, Vn,j
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The aggregated LP (2.10) does not have a solution of the form (2.8). But motivated by
(2.8), for a state n, we can construct a policy #(n) as follows:

aj-_| + aj-

a(n) = LTS,

where

Jj° = argmaxg(n.j).
J

i.e., &(n) is the middle of most likely price interval.

For the single-class system with a linear demand function A(u) = Ag — Aju, Table 2.2
reports numerical results of the system with different parameters (Ag, A\; and g). The total
bandwidth is C = 30 and the bandwidth required for one connection is 7 = 1. The optimal
revenue (dynamic policy) is J* and the revenue of the optimal static policy is Js. We
partition the control space (feasible price) into L uniform intervals, Ji is the optimal value
of the aggregated LP (2.10), J; is revenue rate obtained by the dynamic policy @(n). The
policy we get for the first row of Table 2.2 is shown in Figure 2.1(a). The optimal dynamic

policy is depicted in Figure 2.1(c).

o [ w (o2 [ 7 [ % [ L] % [ %
60.0 | 5.0 1.0 2.0 167.68 | 165.92 80 | 175.83 | 167.62
50.0 | 5.0 | 1.0 1.67 121.48 { 120.70 || 60 | 127.39 | 121.43
50.0 | 5.0 | 0.5 3.33 92.49 91.12 140 | 96.98 92.40
45.0 | 5.0 | 1.0 1.5 99.82 99.43 30 | 104.80 | 99.79
45.0 | 5.0 0.5 3.0 79.47 78.30 130 | 83.25 79.38
45.0 | 5.0 | 0.2 7.5 42.03 41.57 260 | 44.05 41.81
45.0 1 0.5 0.1 15 232.18 | 230.60 | 410 | 243.47 | 229.55
45.0 { 0.5 | 0.05 30 12.28 12.23 790 | 12.87 12.20

Table 2.2: Numerical results of price aggregation for single-class problem (C =
30, r = 1), with uniform price interval.

It has been proved in [PT00] that for the finite capacity single-class system, the optimal
price is a nondecreasing function of the state (resources being occupied), and from Theorem

2.2.3, the optimal prices are always larger than the optimal price (constant) for the infinite
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capacity system. We observed that when the system is nearly empty, the optimal price
varies slowly with the state n. Based on these observations, we can form price intervals
with varied sizes, more specifically, we use large intervals for low prices and small intervals
for high prices, to decrease the total number of intervals and guarantee sufficient accuracy at
the same time. Table 2.3 shows the results of this approach. Comparing with the approach
of uniform intervals, we can see that we can solve a smaller LP problem to obtain an equally

good result. Figure 2.1(b) depicts the policy obtained from this method.

| Ao | A f 7 pééga/—r J* Js L JL J;
60.0 [ 5.0 1.0 2.0 167.68 | 165.92 | 57 | 175.83 [ 167.62
50.0 | 5.0 [ 1.0 1.67 121.48 | 120.70 || 48 | 127.39 | 121.43
50.0 | 5.0 [ 0.5 3.33 9249 | 91.12 || 78 | 96.97 | 92.31
45.0 [ 5.0 [ 1.0 1.5 99.82 | 99.43 || 40 | 104.80 | 99.79
45.0 (5.0 ] 0.5 3.0 79.47 | 78.30 || 74 | 83.375 | 79.31
45.0 [ 5.0 | 0.2 7.5 42.03 | 41.57 |[ 101 | 44.05 | 41.91
45.0 [ 0.5 | 0.1 15 232.18 | 230.60 || 157 | 243.68 | 231.38
45.0 [ 0.5 | 0.05 30 12.28 | 12.23 | 289 | 12.89 | 10.74

Table 2.3: Numerical results of price aggregation for single-class problem (C =
30, r = 1), with varied price interval.
From these examples, we can see that using the price aggregation approach, we can get
a satisfactory dynamic policy and with this policy prices would change in a longer time
scale than the state n. Such a policy is more attractive to implement and more acceptable
by users. Moreover, this approach provides an upper bound on the optimal revenue which
is useful in assessing the degree of suboptimality of suboptimal policies. The approach can

be extended to multi-class case, but the notation will be more cumbersome.

2.5 An Upper Bound on Optimal Revenue

In most cases, it would be hard to find the optimal policy and/or optimal revenue rate, we
have to therefore resort suboptimal policies. The critical question is how do we determine
that a suboptimal policy is “good enough”. To this end, in this section we will obtain an

upper bound on the optimal revenue rate.
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(a) (b) (c)

Figure 2.1: The dynamic policy for a system with total bandwidth C = 30,
which provides a single-class service (r = 1), and A = 60, Ay =35, pu =1, (a)
by price aggregation with uniform interval; (b) by price aggregation with varied
interval; (c) by value iteration for DP (optimal policy).

The idea is that while the system stays at the steady-state, the mean arrival and depar-
ture rate of the customers are equal. As in Section 2.4, we divide the price into L intervals,
(aﬂxal)y (alva‘l)’ ) (aL—lvaL)y where Qg = 07 a <---< ag, and @[ = Umax- Let W(k)
be the steady-state probability of being in price interval & and n the average number of
the customers at steady-state. The problem is formulated using the flow balance equations.
Counsider a system with M classes of service, and let 7(Z, k) be the steady-state probability

of the price of the ith type of service being in price interval k. The following LP problem

provides an upper bound on the optimal revenue rate.

w(i.k)

max > (i, k)Ai(ar-1)ak (2.11)
i k
st. Y w(i,k)=1, Vi
k
nipi 2 ) Milew)w(i k), Vi
k
nipi < Z Ailag—1)m(i. k), Vi
k
Znir,- S C
1rl(z',k) >0, Vi, k

n; >0, Vi
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The computational examples are given in Table 2.4 and Table 2.5, where L is the number of
price intervals and J;, denotes the optimal values of the LP in (2.11). By solving a nonlinear

programming (NLP) problem, [PT00] provides another tighter upper bound.

o [N [+ [p2 %[ & [ L [ J |
60.0 | 5.0} 1.0 2.0 167.68 | 10000 | 180.04

50.0 | 5.0 1.0 1.67 121.48 | 10000 | 125.03
50.0 | 5.0 | 0.5 3.33 92.49 | 10000 | 105.04

45.0 | 5.0 | 1.0 L.5 99.82 | 10000 | 101.27
45.0 | 5.0 | 0.5 3.0 79.47 | 10000 | 90.03
45.0 | 5.0} 0.2 7.5 42.03 | 10000 | 46.84
45.0 | 0.5 | 0.1 15 232.18 | 10000 | 252.38
45.0 | 0.5 | 0.05 30 12.28 | 10000 | 13.09
Table 2.4: Numerical results of the upper bound for single-class problems (C =
30, r =1).
Ao | Al [m & I“Xé_/«:rl A2,0 Ao | p2 & % J* L Jr
40.0 | 4.0 1.032 350.0 | 35.0 1.129 952.63 | 20000 | 972.95
40.0 | 4.0 1.032 500.0 | 50.0 1.613 1281.65 | 20000 | 1317.47
80.0 8.0 2.064 350.0 | 35.0 1.129 977.28 | 20000 | 1012.56
80.0 8.0 2.064 500.0 | 50.0 1.613 1288.97 | 20000 | 1329.89
160.0 | 16.0 4.128 1280.0 | 128.0 4.129 2235.13 | 20000 | 2349.78
320.0 | 32.0 8.256 2560.0 | 256.0 8.258 2613.36 | 20000 | 2725.89
640.0 | 64.0 16.512 5120.0 | 512.0 16.516 2820.47 | 20000 | 2915.03

Table 2.5: Numerical results of the upper bound for two-class problems (C =
155, ry =4, rs = 1, Hy = 1, Hr = 2).
2.6 Approximate DP Approach

For large, multi-class problems, it is nearly impossible to get the optimal dynamic price
through value iteration, and even the price aggregation method in Section 2.4 becomes
impractical. In this section, we explore an approximate dynamic programming approach

through which we can obtain a suboptimal dynamic policy.
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The idea is that we still use the LP formulation in Equation (2.5) to obtain the policy,

min J (2.12)
J.h(n)

s.t. J+h(n) > H(n,u), Vueld,nesS,

where the control space U is discretized. When the system is very large, we will have many
feasible states n and large number of (n,u) pairs. This means the number of variables
(h(n) and J) and constraints is very large, and the LP problem (2.12) is hard to solve. To

address this problem, we approximate the reward function A(n) with the linear form

K
h(n) =) Yrwi(n), (2.13)

k=1
where ¥ = (¢¥1....,%K) is a vector of parameters, and wi(n) are given functions of the

state n. This amounts to approximating the reward function h(n) by a linear combination
of K given function wi(n), £ =1,..., K. It is then possible to determine ¢ = (¢, .... %K)
by plugging (2.13) in H(n,u) in the preceding linear programming problem. This new
problem has a small number of variables but still many constraints. We will use a cutting-
plane method guided by simulation. In particular, we initially solve an LP similar to (2.12).
But its constraint is only a subset of the constraint in (2.12) corresponding to just a few
states, and for any of those states, n, we select the price that maximizes the instantaneous
revenue rate H as its price,

a{n) = [lxlleag(c H(n,u).

Then we use simulation to evaluate the performance of this policy. Starting from one of
these states, as the simulation goes on, the system will get to a new state i (not included
in the original LP). We check the constraints J + h(n) > H(n,u) for that new state, and
if for all possible prices, the constraints are satisfied, we find the price that maximizes
the instantaneous revenue rate and use that as our policy for this state and continue the

simulation; if there are some constraints that are violated, we add the violated constraints
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into the original LP problem and solve the extended problem, then update the policy and
continue the simulation. Eventually, we will find a “good” dynamic policy for the problem.

We present numerical results for two examples to show the efficiency of the approximate
DP approach. In those examples, we selected the following approximation for the reward
function h(n):

h(n) =n'Qn + c'n,

where Q is an M x M symmetric matrix and c is an M-dimensional vector, M is the number
of classes. Here, we set the relative reward of the empty state to be zero.

Example 1 is a single-class system with a total bandwidth of C = 30. The bandwidth
required for each connection is r = 1. The demand function is linear, which has the form

A(u) = Ag — A\ u. The parameters are A\g = 60, A\; = 5. The departure rate is 4 = 1.

o " = E) ® ) B "o K x E) »
Boe o B ey vy Tt f o oy )

(a) The relative reward {b) The dynamic policy

Figure 2.2: The numerical results for Example 1. The control space U is
discretized into L = 30 intervals. The revenue obtained from the approximate
policy is 161.24, while the optimal revenue is 167.68.

Figure 2.2 depicts the relative reward and dynamic policy for the system in Example 1
obtained by solving the LP with the quadratic approximation of the relative reward function
(compared with the optimal values). We can see that the quadratic approximation captures
the basic feature of the relative reward function.

In Example 2, the system with total bandwidth C = 155 provides two classes of service
(M = 2). The first class requires 4 units of bandwidth, the second class requires 1 unit of

bandwidth (r; = 4, r = 1). Both classes have linear demand functions, the parameters
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are Ao = 40, A\ = 4, A2p = 350, Xy, = 35. The service rate is ) = 1 and pu2 = 2,
respectively. For this two-class problem, Figure 2.3 depicts the dynamic policy obtained by
the approximate DP, and through the simulation, the revenue of this policy is 920.529. The

optimal revenue is 952.63.

H P, //' s
: I »
(a) Dynamic policy for class one (b) Dynamic policy for class two

Figure 2.3: The numerical results of the approximate DP for Example 2. The
control space U is discretized into L = 20 intervals. The revenue obtained from
this approximate policy is 920.529. The optimal revenue is 952.63.

The most important advantage of this approximate DP method is that it can solve very
large problems. Table 2.6 lists the numerical results of this method for some large problems.
For these problems, it is very hard to get the optimal revenue. So we cannot guarantee the

result of approximated DP is close to the optimal value, but we believe that it is possible

to get a good policy if we can find an accurate and simple approximation of the reward

function.
| C (Mo | A |rmi e Ao [ oy [rafpe] J° Jsimu J |
10 40 4 4 1 350 35 1 2 164.63 159.54 188.76
155 40 4 4 1 350 35 1 2 952.63 920.53 972.95
155 70 4 4 1 550 35 1 2 - 2074.44 2260.99
1550 | 400 | 40 4 1 3500 350 1 2 - 8956.29 9729.53
8500 | 400 40 4 1 | 35000 | 3500 1 2 - 85430.68 | 87781.79

Table 2.6: Numerical results of the approximate DP method for some two-class
problems. J* is the optimal revenue derived by value iteration, J is the upper
bound of the problem obtained by the way in Section 2.5, Jsimy is the simulation
result with the policy obtained from approximate DP.
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Chapter 3

Pricing in Communication Systems: The

Network Case

In this chapter, we consider revenue and welfare maximization problems for fixed-routing
multi-service communication networks and show that static pricing is asymptotically opti-
mal in a regime of many small users. In particular, the performance of an optimal (dynamic)
pricing strategy is closely matched by a suitably chosen static policy. For both revenue and
welfare maximization objectives we characterize the structure of the asymptotically optimal
static prices. We employ a simulation-based approach to compute an effective policy away
from the limiting regime. Numerical examples are reported. The approach can handle large

realistic, instances of the problem.

3.1 The Model of Multi-Service Networks

In this section we will introduce the model of the multi-service network we wish to study.
We consider a network with L links. The capacity of each link j is C; of bandwidth
for j = 1,...,L. We will write C = (C},...,Cr). The network provides M classes of
service. Each service class is distinguished by its demand pattern, bandwidth requirement,
call duration, and routing through the network. Classes have a fixed route through the
network. In particular, class i requires r;; units of bandwidth from link j, fori=1,..., M
and j =1,..., L. The routing matrix will be denoted by R = {r;;}, i.e., an L x M matrix

with the (j,7) element being equal to rj;. The route of class i is characterized by the
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sequence of links j;, , Ji., - .- . Ji, it traverses; we will denote it by
. = jilvjigv"'vji _jilv-"7ji(_ y Tji Y = 1;.-4, ) L = Yooy .
R: = {( D11 < <L, rji >0k=1 L} i=1 M

We will write j € R; if link j is any link in the sequence (J;,, Jis: - - - - Ji,)- To exclude trivial
cases, we will be assuming that R; # 0 for each class i. For all other links j that are not in
route R; it is understood that rj; = 0.

As the single-link case, we assume that calls of class ¢ = 1,..., M arrive according to a
Poisson process and stay in the system for a time interval which is exponentially distributed
with rate pu;. Let g = (p1,...,uar)- The network charges a fee u; per call of class ¢, which
can depend on the current congestion level and which affects user’s demand for calls. We will
assume that the demand functions are known and denoted by A;(u;) forclassi,i =1,... M.
We will write u = (uy,...,uar) and A(u) = (A1 (uy1), .., Aar(uar)). We will be making the
same assumption as Assumption C in Section 2.1 about demand functions. We will use
Ao = (A1,0:---,Aar0) = A(0) to denote the peak demand vector.

Let n;(t) be the number of class 7 calls that are in progress at time t. We will denote
by n(t) = (ni(t),...,nar(t)) the state of the system at time ¢t. An incoming class 7 call is

accepted if all the links along its route have enough available bandwidth, that is, if
R(n(t) +e;) <C,

where e; is the ith unit vector. If this latter condition is violated, an incoming call is rejected
and lost for the system. Let S = {n | Rn < C} denote the state space for the system, i.e.,
the set of states at which capacity constraints are satisfied.

A pricing policy is a rule that determines the pricing vector u(t) = (ui(t),-..,uar(t))
at any time ¢ as a function of the state n(t). As in Chapter 2, we are interested in pricing

policies for revenue maximization and social welfare maximization.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1.1 Revenue Maximization Problem

The formulation of revenue maximization problem is the same as in single-link case. For
a pricing policy u(t), at time ¢, if there is enough bandwidth to accept a class ¢ call, the
instantaneous expected revenue rate from those calls is A;(u;(¢))u;(¢), since class ¢ arrivals
are Poisson with rate \;(u;(¢)); if there is not sufficient bandwidth to accept class 7 calls we
can, without loss of generality, set u;(t) = u; max such that A;(u;(t)) = 0. Thus, the total

expected long-term average revenue is given by
M

J = Tlin;%gE [/OT Ai(u,-(t))u,-(t)dt] = lim %E [/OT z\(u(t))’u(t)dt} . (3.1)

3.1.2 Welfare Maximization Problem

As the single-link case, we associate a utility U; with a potential call of class z. U; is a
random variable in [0, u; max] wWith density function fi(u;); potential call arrival of class
i is a Poisson process with rate A;g. Class 7 calls are realized according to a randomly
modulated Poisson process with rate \;(u;(t)) = Ao:P[U; > ui(t)]. The expected utility
conditioned on the fact that a call has been established, under current price of u; is equal
to E[U; | Ui > u;]. The expected long-term average rate at which utility is generated is
given by

T—oo

) 1 M T
lim ;E [/0 Ai(ui(8)E[U; | Us 2 'U-i(t)]dt] : (3.2)

According to the . 1 — T
’I’lg%o T :E_' E [/0 Ai(ui(8)E[U; | U; > u(t)]dt

M) =xio [ v, (33)

and

() EU: | Ui 2 w] = Aig / " v fiw)dv, (3.4)
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3.2 Optimal Dynamic Policy

We will start the analysis by considering optimal (dynamic) pricing policies. Under both ob-
jectives of revenue and welfare maximization the problem can be formulated using stochastic
dynamic programming (DP). We first consider revenue maximization.

The state of the system n(t) evolves as a continuous-time Markov chain and its total

transition rate out of any state is bounded by

M C.
v = Z (/\O,i -i-[.l.i]@lég’lg_l IV—J]) .

i=1 Tyt
The Markov chain can be uniformized, leading to a Bellman equation of the form

M
. _ Ai(u;) i _
J*+ h(n) = max | E Ai(ug)u; + - E Th(u+e,-) + E Th(n —e;)
i¢C(n) i¢C(n) =1
/\('U.) M nigs;
_ i 1 — T+ h . .
+ |1 E E > (m)|. (3.5)

. v ;
i€C(n) i=1

where U = {u ]| 0 < u; < u; max, Vi} is the set of possible price vector and C(n) = {i{ | R(n+
e;) £ C} is the set of classes whose calls cannot be admitted in state n. Here J* and
h(n) denote the optimal expected revenue rate and the relative reward in state n. This DP
formulation is in fact almost identical to the one in Section 2.2.1, the only difference being
the definition of C(n) which has been extended to the network setting. It has been argued
there that the standard infinite-horizon average-cost dynamic programming theory applies
(see [Ber95]), thus, there exists a stationary policy which is optimal. We will use u*(n) to
denote an optimal policy to explicitly indicate its dependence on the state of the system.
Such a policy can be found by solving Bellman’s equation using standard DP algorithms.
However, Bellman’s “curse of dimensionality” prohibits us from solving realistic instances
of the problem. Consequently, we are interested in exploring simpler, yet not too far from
the optimal, alternatives. Before we proceed with this agenda we state some properties of

the optimal policy. These properties are simple extensions of the results in Section 2.2.2 for
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the single-link system, thus, we omit the proofs.

Theorem 3.2.1 1. (Monotonicity of h(n)) For all i and all n such that R(n+e;) <

C, we have h(n) > h(n + e;), where e; denotes the ith unit vector.

2. (The infinite bandwidth case) If there are no capacity constraints on all links in

the network (i.e., C; = oo, Vj), the optimal revenue is given by

M

Jo = max ; Ai(ui)uiq,

and the optimal price vector is some constant u., that does not depend on the state
n. Furthermore, we have J* < J.

3. There exists an optimal policy u® such that for every state n, we have u*(n) > uy.

The case of welfare maximization, can be treated similarly.

3.3 Static Pricing Policy

Possibly the simplest pricing policy is a static policy defined as the policy under which
prices are fixed to some vector u independent of the state of the system. According to this
policy the system evolves as a continuous-time Markov chain which has a unique stationary
distribution. In particular, the steady-state distribution has a product form and under a

static pricing policy u is given by (see [Kel91] and [Ros95])

mn(u) =Pn()=n|u(t) =u] = 1 ﬁ (pi(ui))™ nes (3.6)
n - - - G(u) =1 'n.i! ’ ’ '

where G(u) is a normalizing constant given by

1 (i)™
6w =3 T
nes i=1 T

and p;(u;) = Ai(uwi)/pi is the load offered by class i.
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According to the static pricing policy the prices stay fixed which results in a constant
arrival rate A(u) independent of the state of the system. As a result we can not eliminate
demand by raising prices when available resources are not sufficient to accept a call. Thus,
deviating from our earlier convention, we will be blocking calls that arrive to find no suffi-
cient resources. Consequently, the blocking probability has to be taken into account when
calculating revenue. The blocking probability of class 7 calls under static policy u is given
by

s(@) = D ma(w). (3.7)

{n| R(n+e;)LC}
The optimal revenue by a static policy is given by

M
J; = max J(u) = tgg&cg Ai(ui)u; (1 — Plogs(u)) , (3.8)

and it can be no better than the optimal (dynamic) revenue, i.e., J; < J*.

The calculation of the optimal static revenue Js; and the corresponding optimal static
policy us suffers from a similar “curse of dimensionality” as in the case of dynamic policies.
In particular, to calculate the blocking probability one needs to compute the steady-state
probabilities m, (u) which depend on the normalizing constant G. Computing this constant
for networks with arbitrary topologies is an NP-complete problem (see [Lou90]). Efficient
schemes exist for special topologies and the so call reduced load approzimation can be used
to approximate the blocking probabilities in arbitrary networks (see [Ros95]). Numerical
difficulties, though, exist for the reduced load approximation for large systems. To overcome
high dimensionality problems we are interested in scalable and efficient ways of computing
“good” static policies.

For the case of welfare maximization, the same discussion applies, with A;(u;)u; replaced

by Ai(uw))E[U; | Us 2 v
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3.4 An Upper Bound on Optimal Performance

We will next develop an upper bound on the optimal revenue J*. Such a bound is useful
because it can help us bound the suboptimality gap of suboptimal policies we consider in
this thesis. It will also be instrumental in establishing our asymptotic optimality results.
Let us denote by u;();) the inverse of the demand function A;(u;), which exists due to
Assumption C. Let us also denote define F;()\;) £ M\u;(A\:i) and Fi()\;) £ NE[U; | U; >
u;i(A\)], i = 1,..., M, for the case of revenue and welfare maximization, respectively. We
assume that the functions F; are concave. This is true, for example, when the demand

function A;(u;) is linear. The following theorem provides an upper bound on J~.

Theorem 3.4.1 Consider the following nonlinear optimization problem

M

max Y Fi(\) (3.9)
i=l1

A

s.t. Ai = Mipy, i=1,....,M,

and let J,, denote the optimal objective value. If F;(\;) is a concave function for all i =

1,.... M, then J* < Jyp-

Proof: Consider an optimal dynamic pricing policy u*. Without loss of generality, we
assume that the price u} becomes large enough (e.g., %;i max) and the arrival rate A;(u])
is equal to zero, whenever the state n is such that a class ¢ call cannot be admitted (i.e.,
R(n + e;) £ C). In the system operating under the optimal policy, we can view the arrival
rate, \;, and the number of class 7 customers in the system, n;, as random variables. Let E[']
denote the expectation with respect to the steady-state distribution under this particular
policy u*. At any time, we have 3, n;r;; < Cj, V3, which implies that )" E[n;]r;; < Cj, Vj.
Furthermore, Little’s law implies E[\;] = p;E[n;]. Thus, E[n;], E[A;],i=1,..., M, form a

feasible solution of the problem (3.9). Using the concavity of F; and Jensen’s inequality, we
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have

M M
Jub = " F(ED]) = ) E[F((A)] =7,

=1 i=1

where the last equality used the optimality of the policy under consideration. [

3.5 Asymptotic Optimality of Static Pricing

We will now proceed with establishing our main results for the model considered in Section
3.1, namely, the asymptotic optimality of static pricing and the derivation of guarantees on
the suboptimality gap away from the limiting regime.

The limiting regime we will consider is one of “many small users”, in the sense that
link capacities become large compared to the bandwidth of a typical call. More specifically,
we start with a base system with finite demand function A(u) and finite capacity C and
then scale by increasing both demand and capacity by a scaling factor ¢ > 1. We will
use a superscript ¢ to denote various quantities in the scaled system. In particular, in the
scaled system the capacity is C° = ¢(C},...,CL) and the demand function is given by
A°(u) = (A (u1), ..., Aar(uar))- Note that in the revenue maximization problem we simply
scale the given demand function. In the welfare maximization problem it suffices to scale the
peak demand rate as Aj = cAg and keep unaltered the behaviour of the users summarized
in the utility density function f;(u;) (see Section 3.1). This results in a demand function
Af(ui) = cAo;P[U; > u;]. The remaining system parameters 4 and R are held fixed. The
base system corresponds to the case c = 1.

In the scaled system the upper bound, JS,, is obtained by maximizing 3, cAi(u;)u; in
the revenue maximization case and Y_; c)i(u;)E[U; | U; > u;] in the welfare maximization

case. The constraints in the upper bound calculation become

> A <o, v, (3.10)
Hi

i
which are identical to the constraints for the base system (cf. (3.9)). Hence, there exists
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an optimal solution uj, = (ug, --- s U%p ar)s Which is independent of ¢, and it holds that
J& = cJJb. In proving our asymptotic optimality result we will first consider the blocking
probabilities in the scaled system. We will use the convention that for any static policy u
for which \;(u;) = 0, P} (u) = 0. We will denote by O the set of classes with nonzero
demand at uj,, i.e., O = {i € {1,.... M} | Ai(u, ;) > 0}. We will also denote by Oj.
J =1,...,L, the set of classes ¢ € O that use link j, i.e., O; = {f € O | rj; > 0}. We
will assume that O # 0; otherwise J,;, = 0 which can only happen in the trivial cases that
C =0 or A(u;) = 0 for all #; and . Recall also that we have assumed R, # 0; otherwise
class k£ can be eliminated from the system. All classes ¢ ¢ O are shut out of the system

under u},, do not contribute to the revenue or the social welfare, and according to our

convention have zero blocking probability.

Proposition 3.5.1 Consider either the revenue mazimization problem or the welfare maz-
imization problem and let uj be the optimal solution to the upper bound problem in the
scaled system with parameter c. For any € = (g1,-...exm) > 0, consider the static policy u®
given by uf = ujy, ; +€,i=1,....M. Let P{‘;;scs(ue) be the blocking probability of class k

calls in the scaled system, under policy u®. For every class kK € O and all ¢, we have

P < 3 e {jusiie) }. (3.11)
JERE =
where
&5le,0) 2¢ Y A5(6) + Orj, (3.12)
1€Q;
and
91“ —_— —_ .. . E 3
A;(e) a ’\i(uf)(e d 1) orjzl\z(uub,i)' (3'13)
Hi
Furthermore, for all k € O and j € Ry, infy>q E;k(c, 0) > —o0 as ¢ & oo and
lim PEC (uf) = 0. (3.14)
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Proof: Since € > 0 and due to Assumption C, A{(uf) =0 for all ¢ ¢ O and all ¢. Thus, no
customer exists in the system from those classes ¢ ¢ O and according to our convention the
corresponding blocking probabilities are zero. We will next concentrate on classes : € O.
Let n{ (respectively n{ ) be the random variable which is equal to the number of active
class 7 calls, in steady-state, in the scaled system. under prices u® and with capacity cC
(respectively, with infinite capacity). By defining the arrival processes in these two systems

on a common probability space we can see that for all sample paths n{ is smaller than nf

Using this fact, for any class £ € O we have

loss( ) = P U Z rﬁ'n.f > ch — Tjk
_jekk iEOj
< P U Z Tjin{ oo > €Cj — Tjk (3.15)
_jeRk ieo,-

In the above, note that since k € O and Ry # 0, there exists at least one j € Ry and O;

contains at least class k. Using the fact that ujj, satisfies the constraint (3.10), we obtain

CcA; (u b, )T
P U Z Tji‘nf‘w > CCJ- - Tjk < P U Z TJlnzoo > Z ——ubi Tik
JER I€Q; JER i€0, i€0; ]
cA; (“ub T
S D P|D mimiee > ) —
JER i€0, i€o, ]
(3.16)

where the last inequality is due to the fact P[{J; X;] < 37 P[X]].

Note next that the random variable n{ ., is equal to the number of customers in an
M/M /oo queue with arrival rate c);(uf) and service rate u; for each server. Its moment-
generating function is

c cA{ (u )
E[e™Mo] = #i

= (1)
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and by independence we obtain

< (us
E [ez‘eoz or"n‘-""] =exp\§ ¢ Z —/\l(lf') (earl' - 1) .
i€O, *
Using the Markov inequality and the above, for any j € R, and 6 > 0, we obtain

Ai(ugy ;)T

b, Jt

P E rjinf’w>c E — uoe - — Tjk
iGOj iEOj Hi

) . n¢ Ai(u, i1Tji
<E [ez‘“’i bris "”] exp {—Oc Z ————l( "b_' e +0'I’jk}

o, Hi
Ai(uf) (el — 1) — Orjidi(ul, ;
—eplcY ( i (uf)( ) — Or; <ub,,))+grjk
t€0; Hi

= exp {c Z A5(6) + 0r]-k}

i€0;

= exp {€5(c,0)} . (3.17)

where Af-(e) and ]E-k(c,e) were defined in (3.13) and (3.12), respectively. Optimizing the

T

right hand side of (3.17) over all § > 0 to obtain the tightest bound yields

Ay T
P S minfe > e 3 20 o e} @
i€0; i€o, Hi 2

Combining (3.18) with (3.15) and (3.16) yields

P < 3 e {juieiceo )

JER:

which establishes the exponential bound in (3.11).

Let us now consider what happens as ¢ — oo. For large c, f;k(c,e) will be dominated
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by ¢ ico, A5i(0)- At 6 =0,

Z A]e-i(o) = 0,

iGOj
> OA%,(6) -y rji(Ai(uf) — ’\i(u;b,i)).
iGOj 39 0=0 ieo_l Hi

From Assumption C, for every ¢ € O and any € > 0 we have Ai(u7) < Ai(uy, ;). Further-
more, for every i € O;, rj; > 0. Therefore, Zieo, A;?i(G) achieves its minimum over 6 > 0

at some 67(g) > 0 at which it holds Zieo, A%;(6;(e)) < 0. Note also that for all j € R
inf €5,(c.0) < [c D A5(6;(e)) +65(e)mx | »
= i€o,

and for large enough c the right hand side of the above is O(c Eieo, Aji(e;(s))) which

converges to —oo as ¢ — 0o. This establishes (3.14). u

Remarks:

1. It should be noted that for small values of ¢ the bound in (3.11) could be trivial,

meaning that the right hand side might be larger than one.

2. As ¢ = oo, however, the bound in (3.11) converges to zero exponentially fast like
exp{c Zieo, Afi(OJ‘-(e))}, where 0} () = arginfy>o Zieo, A%;(0) and Zie(), A;'Ti(e;(e)) <
0.

We are now ready to state our asymptotic optimality result. We have seen that JS, is
linear in ¢. The optimal performance J*° and the optimal performance JS achieved by a
static policy are also roughly linear in c. Thus, we will divide such quantities by ¢ to make

comparisons. The following theorem summarizes the result.

Theorem 3.5.2 Consider either the revenue or the welfare mazimization problem and as-
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sume that the functions F;()\;) are concave. Then,

1 1 .1
lim —JS = lim —=J*° = lim -J§,.
c—=oc ¢ c—oc C c—oc C

Proof: To simplify the exposition we will provide the proof for the revenue maximization
case: welfare maximization can be treated similarly. For some ¢ > 0, let € = ce, where e
is the vector of all ones, and consider the static pricing policy u® given by uf = uj, ; + ¢,
i =1,...,M. Let J°u®) be the resulting average revenue, which is no more than the

optimal static revenue J§. Thus,

M M
1 ! , :
lim —J > lim —J%(u®) = cllglo E Ai(uf)us (1 — Ppe (uf)) = E l Ai(uf)uf.
=

cC—o0 C =0 C i=1
=

In the last equality above we used the fact that for all € > 0 demand is zero at u® for all
classes ¢ ¢ O, and Proposition 3.5.1 for all classes i« € O. Since the above inequality holds
for any £ > 0. we take € — 0, which implies u* — u;, and. by the continuity of the demand
functions,

M
1 . .
lim =J > A(uip)uts: = Jap-

c—oc C .
=1

On the other hand. due to the suboptimality of the static policy and Theorem 3.4.1, J§ <

Je LTS = ch}b, and the result follows. a

Theorem 3.5.2 establishes that in the limit ¢ — oo the upper bound of Theorem 3.4.1
is tight and the optimal solution of the upper bound problem, which is a static policy, is
asymptotically optimal. Furthermore, Proposition 3.5.1 can be seen as characterizing the
rate of convergence. This characterization allows us to determine how we should scale any
given system to provide guarantees on the suboptimality gap of appropriately chosen static
pricing policies. The following proposition describes the result. We state the result for the

revenue maximization problem. It can be easily generalized to the welfare maximization
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problem as well.

Proposition 3.5.3 Consider either the revenue or the welfare mazimization problem and
assume that the functions F;(A;) are concave. Let u} be the optimal solution to the upper
bound problem of Theorem 3.4.1. For any € = (€1,...,€ar) > 0, consider the static policy
u® = u, + ¢, and let J°(u®) its performance. For any given § > 0, let (c”,&") be an

optimal solution of the following optimization problem

min c (3.19)
c.e
M M
st (L+8) Y N(ufuf [1- 3 exp { ;ggs;;(c,e)} 2 D> Mi(uip )b
i=1 JER, - =1
>0,

where &5;(c,0) is defined in (3.12). Then, the performance of the static policy u® in the

c”-scaled system satisfies

J* — J< (uf)
< 9. .
Ty S0 (3.20)

Proof: Fix some € = (€1,....€a) > 0 and consider the static pricing policy u® resulting
in average revenue or social welfare equal to J°(u®). Due to the suboptimality of the static

policy, Theorem 3.4.1, and Proposition 3.5.1, J¢(u®) satisfies

M 1 1
Z My )uge,i = Jup = ZJSb 2 ZJC(UE) =
=1
A‘r’ . A‘r’
1,C .
z; Ai(u)uf (1 = Pig(u) 2 Zl M(uf)uf | 1- ; exp { ;ggs;-,-(c,e)} - (321
1= = WASEL

Using the same argument as in the proof of Theorem 3.5.2, we can first take ¢ — oc in the
right hand side of the above and bring the blocking probabilities to zero. If we then take
€ — 0 we conclude that the right hand side of (3.21) converges to its left hand side and the
inequality is satisfied with equality. Thus for any § > 0, we can find a scaling factor ¢ and

a static policy u®, such that ﬁfﬁ%()ﬂ < 4, by solving the optimization problem in (3.19).
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More specifically, if (c*,&*) is an optimal solution of (3.19) we have

= I ) |

5
Jo )

and the desired result follows since JS > J*< . [

3.6 Structure of Asymptotically Optimal Static Pricing Pol-
icy

As we have seen the optimal solution of the upper bound problem of Theorem 3.4.1 provides

a static pricing policy which is asymptotically optimal in the regime of many small users

we considered. We will next characterize its structure. To that end, we will view the upper

bound problem (3.9) as one involving optimization with respect to u;, rather than ;. We

will also write n; in the form \;(u;)/u;. We start with the revenue maximization problem.

3.6.1 Revenue Maximization

The upper bound problem becomes

max Z Aiug)u; (3.22)
Ai(uq)rji .
s.t. — 2 P <C;, V5.
Let @ = (q1,...,qL) > 0 be the Lagrange multiplier vector, where g; is associated with the

capacity constraint on link j. Writing the problem in (3.22) as a minimization problem, its

Lagrangean function becomes

M L M Ai(ui)ri
Llu,@) ==Y N(uw)w+ D g (D — G
i=1 t

j=1 i=1
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Assuming an interior solution u; € (0, %; max). 4; should minimize

—Ai(ui)ui + E Qj/\i(ui)% . (3.23)
: i
7]

Therefore, from the first order optimality condition we obtain

o CAd(wg) rJ, .
u; = ~ () du ]Z=:l = V. (3.24)

This structure is insightful. The first term is the reciprocal of the demand elasticity, pre-
scribing that we should charge more to classes with more inelastic demand. The second
term is a usage-based charge. Notice, that by complementary slackness conditions ¢; = 0,
if the corresponding constraint is not active, which can be interpreted as link j not being
congested. On the other hand, if link j is congested (i.e., the corresponding constraint is
satisfied with equality at the optimal solution), we charge each class a price ¢; > 0 per unit
of volume on link j. Here, we define as volume the quantity 7;;/u;, which is the bandwidth
occupied times the expected holding time. Thus, the second term in (3.24) includes a charge
for volume on congested links along the route R; of class z.

This pricing structure is appealing from an implementation point of view. Large (back-
bone) networks might typically accommodate many service classes (number of offered ser-
vices times number of origin-destination pairs), but consist of a relatively small number of
links. Later on we will use this pricing structure and optimize over the shadow prices q to

obtain near-optimal performance even away from the limiting regime.

3.6.2 Welfare Maximization

The case of welfare maximization can be treated similarly. Using (3.4) an interior solution

u; € (0, %; max) should minimize

U, max T
—/\O.i/ vfi(v)dv + E Qj’\i(ui)—“]_l ,
u . T
J

H
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which is analogous to the condition in (3.23) for the revenue maximization case. Therefore,

from the first order optimality condition we obtain

dXi(u;
Ao,i Ui filui) + Z 7’]1 1(1'(1 ) =0,
which, by using (3.3), becomes
L
w=Y gL Vi (3.25)
=

As in the revenue maximization case ¢; = 0 for non-active constraints. thus, the pricing
structure in (3.25) prescribes a usage-based charge for volume on all congested links along

the route R; of class :.

3.7 Large Scale Problems

In this section we discuss how the pricing policies we have considered so far can be computed
and applied to large scale systems.

Large networks consist of numerous classes (equal to the number of offered services times
the origin-destination pairs) and many links with large capacities. As a result. the state
space S = {n | Rn < C} becomes enormous and it is intractable to compute the optimal
(dynamic) policy. One could potentially leverage recent approximate dynamic programming
techniques to compute an approximately optimal dynamic policy. This direction has been
successfully explored in Section 2.6 and [PTO00], and can be generalized in the network
setting. The sheer dimensionality of the network problem though, makes the computational
effort more challenging.

In this thesis we are focusing on static pricing policies because they are simpler and
have significant implementation advantages over dynamic ones; we have outline those in
the Introduction. As we commented in Section 3.3, computing the optimal static policy

exactly is also computationally intractable. Instead we will experiment with the following
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two approaches to compute effective static pricing policies:

1. Policy from the Upper Bound. As we have seen the optimal solution of the
upper bound problem in (3.9) forms a static pricing policy for our original model of
Section 3.1. we have seen that in the limiting regime of many small users this policy
is asymptotically optimal. Furthermore, it is quite easy to obtain; their computation
amounts to solving a nonlinear programming problem with O(L) linear constraints

and O(M) decision variables; for which effective algorithms exist.

2. Using the structure of asymptotically optimal static policy. A concern with
the static policy from the upper bound is that it might not perform as well away from
the limiting regime. Some earlier experience with the single-link problem indicates
that its asymptotically optimal structure (given in Section 3.6) is effective away from
the limiting regime but the values of the various parameters might not be appropriate
away from the limit. More specifically, note that the structure of the policies in Section
3.6 depends on the selection of a set of shadow prices (Lagrange multipliers) for the
resources at all congested links of the network. To improve upon the policy obtained
from the upper bound we seek to optimize the performance objective (revenue or
social welfare) over those shadow prices. To that end, we employ a simulation-based

method outlined in the following subsection.

3.7.1 A Simulation-based Method

The underlying idea is rather simple and is the basis of so-called perturbation analysis
techniques (see Cassandras [Cas93}, Fu and Hu [FH97] and references therein). We adopt
the structure of the policies of Sections 3.6 and 4.4 and view them as functions of the
Lagrange multipliers ¢;, 7 = 1,..., L. During the course of a simulation of the system we
obtain “gradient information” which is used to optimize over g;’s. To that end, we will apply
a technique developed by Marbach and Tsitsiklis [MTO1]. Alternatively, we could optimize

over prices directly, but the dual approach of optimizing over the Lagrange multipliers g; is
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more preferable in large networks since, typically, the number of classes is much larger than
the number of links. In the remaining of this section we will focus on revenue maximization
in the original model of Section 3.1. The discussion readily extends to welfare maximization.

To fix our notation for discussing the simulation-based optimization method, consider

the policy structure of Equation (3.24), i.e

_Ai(wd) .
u; = — d/\ () dus g ;= t=1,....M.

To explicitly denote that u; is a function of q = (q1,--..91), we will write u;(q) and be
referring to this as the “q policy”. The demand function of class i also becomes a function

of q, we will write A;(q). In the uniformized discrete-time Markov chain discussed in

Section 3.2, the transition probability from state n to state f is given by

r

Ai(q) /v if i =n+e;,i ¢ C(n),

nipi/u ifn=n-e;,

Pna(q) = P[n(t+1) = a|n(t) = n;q] = ¢
1 —_

-3 — lef‘— ifa =n,
i¢C(n) i

0 otherwise,

where n(t) is the state at discrete time £ and C(n) = {¢ | R (n + e;) £ C}, defined in Section

3.2, is the set of classes whose calls cannot be admitted in state n. The instantaneous revenue

rate at state n is given by

gn(@) = Y A(@)ui(a),
igC(n)

and the expected long-term average revenue under policy q is

J@ = lim 1B [Z g..m(q)]

t=0

The simulation-based optimization algorithm of [MTO01] is for unconstrained problems
59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and requires a number of technical assumptions to guarantee convergence, including that
Pna(q) and gn(q) are bounded, twice differentiable, and have bounded first and second
derivatives, and that %l is bounded. A demand function satisfying our Assumption
C might violate these properties. Consequently, for the purposes of the simulation-based

optimization we will replace \;(u;) with another (smoother) function Xi(ui) satisfying
1. A(u;) >0 forallu; € R;
2. :\i(u,-) is strictly decreasing, bounded, and has bounded third derivative for all u; € R;
3. for any given € > 0, \;(u;) satisfies [ Ni(w:) — Ai(u;)] < € for all u; > 0; and

4. Xi(ui)u; and ﬂ,{"Tﬁ/{ﬂ— are bounded for all u; > 0.

Such a modified demand function satisfies the properties on pnaa(q) and gn(q) mentioned
above. Note that when u; < 0, we have :\,-(u,-)u,- < 0 and incur a negative revenue, which
is worse than setting u; = 0. Therefore, the optimal solution of the simulation-based
optimization will correspond to nonnegative prices.

To provide an example on how such a smooth demand function Xi(u;i) can be constructed

consider the case of linear demand, i.e.,

A0
Aio — Aiiti; 0 < up < timax = 350,

Ai(u;) = (3-26)

0 Uq > ui’ma_x.

This can be replaced with
2/\1',01[,'
N2 N2 !
\/(ui-——iﬁ) +e + \/(ui-i-i:—:‘:) +€

and some € > 0, which satisfies all requirements 1-4 stated above. By selecting a small

Vu; € R, (3.27)

Ai(wi) = Aig —

enough ¢, we can make :\,-(u,-) arbitrarily close to \;(u;), for all u; > 0 (see Figure 3.1 for

an example).
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Figure 3.1: )\;(u;) and Ai(u;) of Equations (3.26) and (3.27), respectively, when
Aio=40, ;1 =4, and e = 1.

For every q € RL, let P(q) be the transition probability matrix of the Markov chain
with entries paa(q). Let P = {P(q) | q € RL} be the set of all such matrices and let P
be its closure. Obviously, the Markov chain corresponding to every P € P is aperiodic.
The empty state n® = 0 is recurrent for every such Markov chain. Moreover, the system
has finite number of states, the service rate is positive for all classes, thus, there exists a
number Ny, which is no more than the total number of states, such that for every state n,

and every collection of {Py,..., Pn,} of Ny matrices in P, we have

n=1 Li=

Nog n
$ [ p,-] > 0.
L nn®

where [A],, qo denotes the (n,n°®) element of the matrix A.

Given these observations and with the modified demand function ;\i(ui), our setting
satisfies all the assumptions in [MTO1]. We will apply the following simulation-based op-
timization algorithm proposed there. The algorithm optimizes J(q) over q by estimating
the gradient VJ(q) and updating q in a single sample path of the simulation. The update
can be taken either at visits to the recurrent state n®, or at every time step. We provide

the algorithm that updates q and J at every time step, where J is the estimate of J(q).
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Algorithm 3.7.1 ([MTO1]) At a typical time t, the state is n(t), and the values of q(t),
z(t), and J(t) are available from the previous iteration. z(t) is a vector of the same dimen-

sion as q. We update q and J according to

at+1) = at)+% (Voaw (@ + (gn (@ - J(0)2(1))

Jt+1) = Jt) +v(gaw(@) — J(t),

We simulate a transition to the next state n(t + 1) according to the transition probabilities
Pnal(q(t + 1)), and finally update z by letting
ifn(t+1) =n°,

z(t+1) =
otherwise.

VPa()me+1)(alt)
z(t) + Pn(t)nce+1)(a(t)) °

The convergence of the algorithm (w.p.1) to a stationary point of J(q) (i.e.. a point where
the gradient is zero) is guaranteed by selecting appropriately a stepsize v (e.g.. 7 is dimin-

ishing as in v, = 1/t).

3.7.2 Numerical Results

In this section we tackle, numerically, some illustrative network pricing problems using the
ideas discussed on the model of Section 3.1. We will present revenue maximization problems.

The qualitative conclusions would not be much different in welfare maximization.

A Five-node Network

Our first example, depicted in Figure 3.2, is a network with 5 nodes, 4 links, and 12 service
classes. The link capacities are shown in the figure. The parameters for the 12 classes of
services, are listed in Table 3.1. The demand functions in this example are linear and have
the form of Equation (3.26). Table 3.2 compares the upper bound J,, (cf. Theorem 3.4.1)

with the two policies proposed in Section 3.7, namely, the policy from the upper bound and
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Figure 3.2: A 5-node, 4-link network with 12 service classes.

[ Class i | Nodes | Links | Bandwidth Requirement r; j Demand Function A;(y;) | w: ]
1 1,0,2 1,2 1 150 — 75u; 5
2 1,0,3 1,3 1 150 — 60us 5
3 1.0,4 1,4 1 250 — 125u3 5
4 2.0,3 2.3 1 140 — 40uy 5
5 2,0.4 2,4 1 300 — 150us; 5
6 3.0,4 3.4 1 150 — 35u¢ 5
7 1.0,2 1,2 5 6 — ur 1
8 1,0,3 1,3 5 7 — 1.2ug 1
9 1.0,4 1,4 5 6.6 — 0.8ug 1
10 2,0,3 2,3 5 6 — 0.6ug 1
11 2,0.4 2,4 5 6 — 0.6u;; 1
12 3,0,4 3.4 5 6 — 0.5u» 1

Table 3.1: The services provided by the network of Figure 3.2.

the policy from the simulation-based optimization approach. The corresponding prices are

given in Table 3.3.

We conclude that the optimized version (via the simulation-based optimization ap-

proach) of our asymptotically optimal static pricing policy is quite close to the optimal.

Note that the percentage gap in Table 3.2 is an upper bound on the suboptimality gap.

It should be noted that even this rather small network has large enough state space for

computing the optimal policy.

It is perhaps of interest to use Proposition 3.5.3 to compute by how much we should scale

the network to achieve a given suboptimality gap. Using the notation introduced there, for
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Jo | July) | Jaim | ZubyESimox 100%

805.49 | 757.29 | 778.56 "3.34%

Table 3.2: Comparing the various policies for the network of Figure 3.2. We use
J(u},) and Jsim to denote the performance of the policy obtained from the upper
bound problem and the simulation-based optimization approach, respectively.

l Policy uj u) us3 Uy 1 Us Ug u; us Ug uig [ (7381 I ui2 l
u’y 1.03 ([ 1.28 | 1.03 | 1.75 | 1.00 | 2.14 | 3.82 | 3.74 | 4.95 | 5.00 | 5.00 | 6.00
us, 1.08 131|108 |1.81 |1.08|221|5.05|4.51|6.17]6.57 | 7.02 | 7.57

Table 3.3: The prices for the network of Figure 3.2 under the policy ob-

tained from the upper bound problem (u},) and the policy obtained from the

simulation-based optimization approach (ug, ).
the network of Figure 3.2 we compute that a suboptimality gap of § = 0.1 is guaranteed by
scaling the network by ¢ = 10.75 and using policy u® with £ = 0.32e, where e is the vector
of all ones. Similarly, § = 0.05 is achieved with ¢ = 25.92 and € = 0.23e. Finally, § = 0.01 is
achieved with ¢ = 211.82 and € = 0.1e. Note that for simplicity of the calculations involved
we only considered € = ¢e in the optimization problem (3.19). The results can be improved
by considering arbitrary e. Clearly, these guarantees come from (crude) bounds on the
blocking probability and are not meant to be very tight. Our optimized policy (uj,,). for
example, would be much closer to optimal in each of those scaled systems. Nevertheless,

Proposition 3.5.3 provides a simple way to quickly assess efficiency gains by scaling the

system.

A Large-scale Network

The second example, depicted in Figure 3.3, is a network of a larger size (perhaps comparable
to a backbone network in the U.S.). It consists of 9 nodes, 13 links, and provides 59 classes

of services, the parameters of which are listed in Table 3.4.

| i Nodes (Links) r; i (u;) pi | i Nodes (Links) r; Xiu;) Bi |
1 1,0 (1) 1 300 -120u; 2 2 2,0 (2) 1 400 - 120u, 2
3 2.1 (8) 1 200 — 40us3 2 4 3,0 (3) 1 250 — 50uy 2
5 5.0 (5) T 400 —80ms 2 | 6 5.1 (10) T 300 = 60ug 2
7 5.0.3(5,3) 1 100—16u; 2 | 8 51,4(10,9) 1 200 —50us 2
9 6,1,0 (I11,1) 1 200—40uwy L |10 _ 6,1 (11) 1 200 —40u;, 1
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[ t Nodes (Links) r; Ai(ui) pﬂl i Nodes (Links) r; Ai(ui) 1
11 6,1,5 (11,10) 1 150—30u;,; 1 |12 7,0,1 (6,1) 1 300 —40u;p 1
13 8,0 (7) 1 300 —40u;3 1 |14 8,0,1(7,1) 1 300 —40u;4 1
15 8,0,2 (7.2) 1 200—40u;s 1 || 16 8,0,4 (7,4) 1 100 — 20us 1
17 1,0 (1) 2 100 ~ 10U17 4 18 2,0 (2) 2 80 — 81.413 4
19 2,1 (8) 2 100—8uj9 4 {20 3,0 (3) 2 100 —10ug 4
21 3,0,1(3,1) 2 80— 10uy 4 | 22 4,0 (4) 2 120 — 12uzs 2
23 4,1 (9) 2 120 —10u3 2 ff 24 4,1,2 (9,8) 2 100 —12uzq4 2
25 5,0 (5) 2 80 — 8uas 2 | 26 5,1 (10) 2 80 —10up 2
27 5,1,2 (10,8) 2 100 —8us; 2 || 28 5,3 (5,3) 2 80 — 8uqg 2
29 5,1,4 (10,9) 2 80— 10up 2 [ 30 6,1,0 (11,1) 2 80 — 6uze 1
31 6,1 (11) 2 100-10u3; 1 |32 6,1,2(11,8) 2 100 — 8ug2 1
33 6,8,3(13,12) 2 100-—12u33 1 | 34 8,0,1 (7.1) 2 80 — 8u3zy 2
35 8,0,2 (7.2) 2 60 — 6uss 2 || 36 8,0,5 (7,5) 2 60 — 8use 2
37 8.6 (13) 2 100 — 10uzr 2 || 38 1,0 (1) 4 40 — duag 1
39 2,0 (2) 4 60 — Su3zg 1 || 40 2,1 (8) 4 80 — 12uy 1
41 3,0 (3) 4 40 — 4uy, 1| 42 3.0,1 (3.1) 4 40 — Suy2 1
43~ 3,0,2 (3,2) 4 40 —6uy3 L || 44 4,0 (4) 4 60 — 3uqq 1
45 4, 1 (9) 4 60 — 4u45 1 46 4, 1, 2 (9, 8) 4 60 — 4U46 1
47 5,0 (5) 4 40 — 4uyr 1 | 48 5,1 (10) 4 40 — 2uyg 1
49 5,0,4(54) 4 50—5uye L ||50 6,1,0 (11,1) 4 50 — 5use 4
51 6.1 (11) 4 50—4us; 4 || 52 6,1,2 (11,8) 4 60 —dus2 4
53 6,8,3 (13,12) 4 60 —6usz 4 | 54 6,1,5 (11,10) 4 30 — 3usg 2
55 7,0 (6) 4 60—3uss 4|56 7,0,2(6,2) 4 40 — duse 2
57 7,0,3 (6,3) 4 20 — 4us7 2 || 58 7,0,4 (6,4) 4 30 — 3uss 2
59 8,0 (7) 4 60 — 6usg 2

Table 3.4: The services provided by the network of Figure 3.3.

Table 3.5 compares the upper bound Jy, (cf. Theorem 3.4.1) with the two policies

proposed in Section 3.7, namely, the policy from the upper bound and the policy from the

simulation-based optimization approach. Again, we observe that J, is quite close to the

Jub J(ug,) Jsim Jub—dsim % 100%
12597.6 | 12117.4 | 12209.6 3.08%

Table 3.5: Comparing the various policies for the network of Figure 3.3. We

maintain the notation of Table 3.2.

optimal.

As in the first example, we use Proposition 3.5.3 to compute by how much we should
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Figure 3.3: A 9-node, 13-link network with 39 service classes. The link ca-

pacities are C| = 840.C» = 420,C3; = 420,C,; = 420,C;5 = 420,C¢ = 300,C; =

420, Cs = 420, Co = 420, Cio = 420.C), = 420, Cy» = 210, and C}3 = 420.
scale the network to achieve a given suboptimality gap. We obtain that a suboptimality
gap of § = 0.1 is guaranteed by scaling the network by ¢ = 3.30 and using policy u® with
€ = 0.59e. Similarly, 4 = 0.05 is achieved with ¢ = 10.74 and € = 0.38e. Finally, § = 0.01
is achieved with ¢ = 218.07 and € = 0.12e. The first two cases (§ = 0.1,0.05) yield scaling

factors that are even smaller than the corresponding ones in the first example.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Pricing in Communication Networks with

Demand Substitution Effects

In this chapter we will extend the model we have considered so far to incorporate demand
substitution effects. In particular, the model introduced in Section 3.1 assumes that the
demand of each class \;(u;) is function of the price for that class only. We are interested
in considering the situation where users might decide to use another class of service as a
(non-perfect) substitute of their desired class if the latter one ends up being very expensive.
Our main results extend to this situation as well. We will present a model that accounts for
such substitution effects in Section 4.1. Following the development of the previous chapters,
we will develop an upper bound on the optimal performance in Section 4.2, establish the
asymptotic optimality of static pricing in Section 4.3, and characterize the structure of the

asymptotically optimal static policy in Section 4.4. Numerical results are in Section 4.5.

4.1 The Model with Demand Substitution Effects

The model is in fact identical to the one introduced in Section 3.1, with the exception that
demand for each class z, 2 = 1,.... M. is not only a function of u;, but of the whole price
vector u, i.e., A(u) = (A;(u)....,Ap(u)). We will maintain the rest of the notation that

was introduced in Section 3.1. We will denote the load on link 7 by

M

T‘"/\i u .
pitw) 23 L
A

i=1
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We will be making the following assumption.

Assumption D

1. If M(u) > 0, then 25 <0, fori=1,...,M;

N

"’—j,.uL:-’ >0, fork#i, k=1,...,M;

3. if A(u) >0, then 3L, 226 <0, fori=1,..., M;

4. limy—oo Ai(u) =0, fori =1,..., M, where u — oc means min; |, ,qu; — oC.

Assumption D-1 indicates that demand for any class is a strictly decreasing function of its
own price. Assumption D-2 indicates that substitution among classes can take place, in the
sense that the increase of the price for a class can increase the demand for other classes.
Assumption D-3 states that only a fraction of demand lost for a class appears as demand
for other classes (due to substitution). Assumption D-4 expresses the condition that as all
prices increase, the demand will eventually decrease to zero for all classes.

As an example, following linear demand functions with substitution effects between two
classes satisfy Assumption D:

,\I(u) = ,\1__0 - ’\l.lul + Al,?.u?’ (41)

A2(u) = A2 + /\2'111.1 — Ag22u2

2,242,

forued = {u|A(u) >0, A2(u) >0}, where A\ g, A20 > 0, A1 > A1 >0, o2 > A2 >
0.

Substitution effects can also be incorporated to our welfare maximization model of
Section 3.1.2. The model remains identical to the one introduced there with the exception
that the user utility U; of class 7 is a random variable depending on the whole price vector
u. In particular, we will assume that it has a probability density function, denoted by
fi(ui | uj,5 = 1,...,M,j # 1), conditional on the prices of all other classes. Potential calls

decide to join the network if and only if the utility they extract exceeds the prevailing price.
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Thus, the arrival rate of class ¢ calls under price u is
Ai(u) = A\oP[U; > ui|uj.j=1,...,M,j #1],

where A, g is the peak class ¢« demand (corresponding to zero prices in the revenue max-
imization model). A class ¢ call joining the system extracts an expected utility equal to
E[U; | U; > ui; uj,j =1,..., M,j # i], thus, social welfare for class i users is accumulated
at a rate of

MNWEU; | U; 2 uwi; uj,j=1,....M,j #1].

Our objective remains to maximize the expected long-term average welfare rate, for which
an expression can be written along the lines of (3.2).

Let us define the expected instantaneous rewards by V;(u) £ u; and V;(u) 2 E[U; | U; >
ui; uj,J =L....M.j # t] for the case of revenue and welfare maximization. respectively.
We assume that A(u) satisfies Assumption D in this case as well. Consequently, A;(u) is
non-decreasing in u;. We will be making the following assumption for the expected rewards.
Assumption E
For alli = 1,...,M and u € {u| A\j(u) > 0}, Vi(u) is a non-decreasing function of u; for
all 7 # 1.

This assumption is trivially satisfied for the case of revenue maximization where V;(u) = u,.
For the case of welfare maximization it can be interpreted as follows. Each class 7 has a
strong core constituency and can not be dominated by class j (7 # ¢) customers who choose
to use class ¢ as substitute when u; increases. These “true” class ¢ customers perceive that
they are extracting a higher utility when other services becomes relatively more expensive.
Thus, Vi(u) is non-decreasing in u; for j # i. It also turns out V;(u) is non-decreasing in

u;. The next lemma establishes the result.

Lemma 4.1.1 Foralli=1,...,M and u € {u | M\;(u) > 0}, Vi(u) is a non-decreasing

function of u;.
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Proof: The result is trivially true for the revenue maximization case where V;(u) = u;. For

welfare maximization we have

S22 vfi(vlu;, ¥i # i)dv
I fiwlu;, V5 # d)dv

‘/l(u=E[Ul|Ul > ug; ujvj=17°-'7Mvj¢i] =

Taking the partial derivative we obtain

dVi(u) _ filuilu;, Vi #4) [27(v — ug) fi(v|u;, Vi # i)dv

OJu; (PU; > ui|u;, Vi # i])?

which is clearly non-negative. m

This lemma can be seen as expressing the fact that when u; increases class ¢ customers
with relatively low utility for the service choose not to use it, thus, the ones that remain

have higher utilities and drive V;(u) up.

4.2 An Upper Bound on Optimal Performance

Assume the demand function with substitution effects is invertible, we can express the
prices as a function of arrival rates A; we will write u; = u;(A) for the class ¢ price. Define
also Fy(A) & M\u;(A) and Fy(A) & ME[U; | U; > ui; uj,j =1,...,M,j # 1] for the case
of revenue and welfare maximization, respectively. Assume that the functions F;(A) are
concave functions of A for all z. This is true, for example, for the case of linear demand

functions (4.1). The following result is analogous to Theorem 3.4.1.

Theorem 4.2.1 If F; are concave functions of A, an upper bound of the optimal revenue

J* is given by

A

max ) F(A) =) dui(A) (4.2)

s-t. A =mnip;

Y mirii <Cj, Vi
i
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z\,-,n,- Z 0, V.

The optimal solution of (4.2) is Jyp, then J* < Jyp.

Proof: Consider an optimal dynamic pricing policy u*. According to the Assumption D-4,
we assume that the price u* becomes large enough and the arrival rate A;(u) is equal to zero.
whenever the state is such that a class i call cannot be admitted (which means R(n+e;) £ C
or 35,3, nkrjx + rji > Cj). We can view A} and n; as random variables, and use E[]
to indicate expectation with respect to the steady-state distribution under this particular
policy. At any time, we have Y .n;rj; < Cj, Vj, which implies that ), E[n;]rj; < Cj.
Vj. Furthermore, Little’s law implies E[A\]] = u;E[n;]. This shows that E[n;], E[A]],
i=1,...,M, forms a feasible solution of the problem (4.2). Using the concavity of F; and

Jensen’s inequality, we have
Jub 2 D Fi(E[XT]) = D _E[F(A)] =J",

where the last equality used the optimality of the policy under consideration. ]

4.3 Asymptotic Optimality of Static Pricing

Consider the same limiting regime of “many small users” of Section 3.5. We scale both
demand and capacity by a scaling factor ¢ > 1, while all other quantities are held fixed.

The demand function becomes
Af(u) = (A{(u),..., A5 (u)) = (cA(u),...,cApr(u)). (4.3)

The capacity of link j is ¢Cj, the load of link j is pS(u) = ¥, Jﬁ‘é,ﬂ =3, J”—*C{i‘-) = p;(u),

j = 1,...,L. The normalized revenue or welfare maximization problem under a static
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pricing policy u can be formulated as:

ueuc

i Vi(w)x(u) (1 - Pl () = maxﬁfV(u)A (w (1- P (w).

where U =U = {u | u; > 0,A;(u) >0,i=1,..., M} is the feasible set of u.

As ¢ — oo,

We use following asymptotic results about loss probabilities in [Kel91].

under a certain static pricing policy, the loss probability of each class converges to

|Obs(u _I_I-I(l— j)r'l‘?i:]-""tl‘/lv

where B; € [0,1), j = 1,..., L satisfy following conditions

M L M

p‘j(u) L Z “_1:(3:’0_,\16(“) ]._I(]‘ _ Bl)ru — 7’]: A S(u )H(l - B

i=1 7t 73 =1 im1 M

Following Kelly [Kel91], we will call g;j(u) the reduced load on link j. We can interpret

these asymptotic results as follows. Calls are blocked independently at each link j in their

route. In particular, class ¢ demand is thinned by a factor of (1 — B;(u))™* at link 7 and

J[le(l -~ Bj(u))it =1- P‘ °°(u) can be seen as the proportion of accepted class 7 calls.

This results into a satisfied demand for class 7 equal to Af(u) J-=1(1 — Bj(u))77:. We will

use Kelly’s [Kel91] terminology and say that link j is overloaded if B;(u) > 0 (which implies

p; = 1); if Bj(u) = 0 we will say that it is underloaded (p; < 1) or critically loaded (p; = 1).

We should note that although the conditions in (4.6) lead to unique values for the reduced

loads p;(u) and the loss probabilities Pf&:(u), the parameters Bj(u) might not have a

unique value. In fact, the values of B;j(u) are unique if the routing matrix R has rank L;

otherwise, there exists a uniques vector (B;(u),...,Br(u)) with maximal support, i.e., a

vector that solves (4.6) and maximizes the dimensions of the set B(u) £ {j | B;(u) > 0}.

The following lemma states an observation that would be useful later on.
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Proof: We will first argue that if rho;(u) < 1, for all j, then Bj(u) = 0 for all j. Otherwise.
suppose there is a link j with B;(u) > 0. Due to (4.6) there is at least one i for which
riiAi(u) > 0. Moreover, (4.6) also implies that g;j(u) < p;(u) and g;(u) = 1. This
contradicts the initial assumption pj(u) < 1. For the converse, note that if all links are
either underloaded or critically loaded. i.e.. Bj(u) = 0 for all j, then p;(u) = pj(u) < 1, for

all j. m

Another interesting observation is that due to (4.5), Bj(u) = 0, for all j, implies that
iu=0foralli=1,...,M.
We next define normalized reward of class ¢ with respect to link j, for all links j with

rji > 0, as follows

Vi (u) 2 5(/—‘:} (4.7)

thus,
riiAi(u)

H

Vi(u)Ai(u) = Vij(u) - = Vi j(u)Xij(u),

where ;\i,]-(u) £ 51% is the normalized demand of class 7 for link j. We can interpret
l‘/,‘,j(u) as reward per volume on link j, where volume has the same interpretation as in
Section 3.6, that is, resource utilization times the expected holding time. For a given
static pricing policy u, the normalized rewards at link j are fixed and define an ordering
among classes traversing link j. In particular, for any classes ¢ and k traversing link j (i.e.,
Tji,Tki > 0), we will say that ¢ is more valuable than k if V,-,j(u) > de(u). If calls occupy
the same resource amount at all links in their route (i.e., for all 7, r;; = r; forall j € R;
and r;; = 0 for all j ¢ R;), then the priority ordering of classes is the same on all links

and Vi,j(u) = r‘:‘;(/':‘)‘ define a unique priority ordering for the whole network. The following

proposition is key in establishing our asymptotic optimality result.
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Proposition 4.3.2 Consider either the case of revenue or welfare mazimization and as-

sume that for any classi =1,...,M and alllinks j =1,...,L

Ti j S Rl:v
Tji =
0 otherwise,

If us oo solves the limiting case of problem (4.4), i.e.,

max lim = ZV(u )A(u) (1 P (u ) = ma.xz Vi(u)Ai(u) H(1 — Bj(u))”, (48)

u€U c—oa ¢

Jj=1
then
/\i(us,oo)"'ji Ai(us o )73 .
) = 30 Ml 5~ Mmooy
i #iC; iljeR;>0 #iC;

Proof: The following discussion is about the case that ¢ — oo. Let u be a static pricing

policy such that on some links, the offered load is greater than 1. The average reward is
> Viwx(w) [J - Biu) =3 Vi(u)ii_xi(u) [1a - Bi(u))™, (4.9)
i { i : t
where Bi(u),l =1,..., L satisfy (cf. (4.6})

3 %z\i(u)l—[(l _Byi= 3 ;,\ (u H(l _B)%<Cjj=1,....L. (4.10)

i l i|jER:
Consider following linear programming (LP) problem with decision variables A = (A1, .., Ayr)
max Z Vi(u) (4.11)
s.t. Z Ai —Za]‘l)‘ <C]7 j=1L...,L,
il JER,

0< M\ < —f,\,-(u), i=1,...,M,

1

where aj; = 1, if j € R;, and zero otherwise. Let A= (;\1, et ,;\M) denote an optimal
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solution.

Consider next the network under static policy u but introduce a random admission
control mechanism. More specifically, class i calls are accepted with a probability equal to
:\,—/ (‘—"i—/\i(u)). Thus, admitted class ¢ calls arrive according to a Poisson process of rate
:\iui /7i, since their requests follow a Poisson process of rate A;(u). We will call System Sa
the original one (without admission control) with prices u, and System Sp the new system

(with admission control). Note that in System Sp we have

PPy = 3 DA _ 5 gy,
ijer, Hi iljer: ’
due to the feasibility condition in (4.11). Thus, Lemma 4.3.1 implies that the block-
ing probabilities are equal to zero for all classes. Notice now that due to (4.10), A; =
EAi(u) [1,(1 = B)™, i =1,..., M, form a feasible solution to problem (4.11). Thus, the
objective value at this feasible solution (given by (4.9)) cannot be more than the optimal.
The optimal value of problem (4.11) is simply the average reward in System Sg, thus, it is
not less the average reward in out original System S..

Consider next the special structure of the problem (4.11). The elements of the constraint
matrix are either 1 or 0, and the coefficients in the objective function are the normalized
rewards, which, as we have discussed before, form a priority ordering for the various classes.
It can be seen, that an optimal solution of (4.11) can be constructed as follows. Make the
Ai corresponding to the highest priority class large as the capacity constraints allow, after
this is set, make the \; corresponding to the next highest priority class as large as possible,
and so on. Applying the randomized admission control discussed previously, the arrival
rate of high priority classes is maximized and only classes with A>0 gain admission to
the network. Let us consider the implications on a link j with offered load pj(u) > 1 in
System S,4. Say that classes Z;,...,ix use this link, where Vil(u) > - > ViK (u). Since
in System Sp the offered load on this link is less than or equal to one, some classes do

not gain admission. In particular, let i be the least priority class that gains admission.
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In System Spg, we accept as much as possible requests from classes 7;,...,2x—; (the arrival
rate of these classes may be less than their original rate if they are not a high priority class
on another congested link), reject all requests from class ix;,...,ix, and from class 7, we
only accept a portion of its calls such that the offered load on link j is equal to 1 in System
Sg.

Let us now slightly increase the price of the lowest priority class ig in both systems
S, and Sg. Solve the LP in (4.11) again to obtain a new A corresponding to the new set
of prices, and apply admission control as before to construct System Sg. As before, the
average reward in System Sp is no less than the corresponding reward in System S.4. Since
we increased the price of class iy, the load of those accepted classes in System Spg could
stay the same or increase slightly due to the substitution effects. Since the V;(u)’s do not
decrease (according to Assumption E and Lemma 4.1.1) the expected total reward will not
be less than before. We keep increasing u;,., unless we reach the point where p;(u) =1 at
which we stop. During this process the ordering of classes (according to their normalized
rewards) might change; to avoid further complicating the notation we will use the indices
iy,...,ix for the ordered set of classes using link j. As the normalized reward Vi,\.(u)
increases it may reach the normalized reward V; x—, (u) of the next least priority class; in
this case we start increasing the prices of both these two classes. It is also possible that
during this procedure of price increases the load of the accepted classes increases to the
point where the “threshold” class i is completely pushed out of the network in System Spg;
in this case ix_; becomes the “threshold” class. These price increases may also influence
the load on other links. We repeat this process on other overloaded links; we may visit an
overloaded link several times due to substitution effects. We stop when we arrive at a price
vector @ at which pj(u) < 1 for all link j. This is guaranteed by Assumption D-3 and D-4.
Throughout this process the average reward in System Sg did not decrease and the average
reward in the corresponding System S.4 remained less than or equal to the average reward
in System Sg.

Consider now the LP in (4.11) at 4. Since pj(@) <1 for all j, the capacity constraints
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in (4.11) are immediately satisfied and at the optimal solution the decision variables A can
become equal to their upper bounds ;—7;‘;:/\1'(11) for all 2. Thus, in System Sp all calls are
accepted with probability one and System Sp becomes identical to System S 4.

To summarize, we started from an arbitrary price vector u under which some links have
offered loads greater than one and constructed a price vector i1 with higher average reward
and offered loads satisfying pj(i) < 1 on all links j. We conclude that the optimal limiting

static policy us oo must satisfy p;j(us o) < 1 for all links j. |

Due to Lemma 4.3.1, the result of Proposition 4.3.2 implies that at the optimal static
prices in the limiting regime, us o, all links in the network are underloaded or critically
loaded, and all classes experience zero blocking probabilities. The following theorem is an

immediate consequence of these observations and Proposition 4.3.2

Theorem 4.3.3 Consider either the case of revenue or welfare mazrimization and assume

forany classi=1,...,M and all links j =1,...,L

Ti JGRI'

0 otherwise,

The optimal static policy in the limiting regime, us o, solves, the following optimization

problem:

M

max Y Vi(u)hi(u) (4.12)
i=1
M

Ai(u)rj; )

s.t. —<C;, j=1,...,L.

IECLRIE

=1

The optimization problem in (4.12) is in fact the same as the upper bound problem in
(4.2), with the exception that decision variables are the prices instead of the arrival rates.

Thus, in the limiting regime (¢ — o0), the optimal static policy achieves upper bound and
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it is asymptotically optimal.

4.4 Structure of the Asymptotically Optimal Static Policy

As in Section 3.6, where we considered the original model of Section 3.1, we will next char-
acterize the structure of asymptotically optimal prices for the modified model of Section 4.1
that incorporates demand substitution effects.

Let us first focus on the revenue maximization case. Consider the problem in (4.12) and
rewrite is as a minimization problem. Let q = (q1,...,qz) > 0 be the Lagrange multiplier
vector, where g; is associated with the capacity constraints on link j. The Lagrangean
function becomes

M
L(u.q) = —Zz\ (a)u; + Zq, (Z A(wry _ Cj) . (4.13)

i=1 Hi

Assuming an interior solution, u should satisfy

VA(u)u = —A(u) + qu Z VA (u), (4.14)
=l =1
where VA(u) is the gradient of the vector function A(u), i.e., an M x M matrix with (2, 5)
element equal to ?%lé-‘ﬂ.

Welfare maximization can be treated similarly. One can write down the optimality
conditions for the problem in (4.12) and solve them analytically for relatively simple forms
of the utility density functions f;(-). The structure of those conditions is rather complex,
so one would have to resort to numerical solution methods for the general case.

The discussion on solving large scale problems in Section 3.7 readily extends to the
model with demand substitution effects. We can use the structure in this section and
simulation-based optimization approach to find a good static policy for large network with

demand substitution effects.
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4.5 Numerical Results

To provide an example, we consider the network in Figure 3.2, but now incorporate demand
substitution effects. The network provides 12 classes of services (See Table 4.1); Class 1
and 7, 2 and 8, can be used as substitutes of each other.

Table 4.2 compares the upper bound Jyp (cf. Theorem 4.2.1) with the two policies pro-
posed in Section 3.7. The corresponding prices are given in Table 4.3. We conclude that the
optimized version (via the simulation-based optimization approach) of our asymptotically

optimal static pricing policy is reasonably close to the optimal.

[ Class i | Nodes (Links) [ r; | Ai(u) P |
1 1.0,2 (1,2 1 130 — 75u, + u~ 3
2 1,0,3 (1,3) 1 150 — 60ua + ug 3
3 1,0,4 (1.4) 1 250 — 125u3 b)
4 2,0,3 (2,3) 1 140 — 40uy b}
5 2,0,4 (2,4) 1 300 — 150us 3
6 3,0,4 (3,4) 1 150 — 35u¢ 3
7 1,0,2 (1,2) 3 6—U7 +0.1‘U.1 1
8 1,0,3 (1,3) 5|1 7—12ug +0.1us | 1
9 1,0,4 (1,4) 3 6.6 — 0.8ug 1
10 2,0,3 (2,3) 3 6 — 0.6u;o 1
11 2, 0,4 (2, 4) 3 6 — 0.6’(111 1
12 3,0,4 (3,4) 5 6 — 0.5u;2 1

Table 4.1: The services with demand substitution effects provided by the net-

work in Figure 3.

2.

Juo | J(uiy) | Jim | Tydem x 100%
814.84 | 765.61 | 783.85 3.8%

Table 4.2: Comparing the various policies for the network of Section 4.5. Ju:,
and Jg, denote the performance of the policy obtained from the upper bound
problem and the simulation-based optimization approach, respectively.

[ POliCY I uy Us I us Uy Us Ug I us usg Ug U0 l Uiy U2
L 1.05 [ 131 | 1.02| 1.75 | 1.00 | 2.14 | 4.12 | 4.06 | 4.69 | 5.00 | 5.00 | 6.00
ug,., 1.09 | 1.26 | 1.06 | 1.79 | 1.04 | 2.18 | 4.92 | 490 | 5.60 | 5.93 | 5.93 | 6.93

Table 4.3: The prices for the network of Section 4.5 under the policy obtained
from the upper bound problem (uj,) and the simulation-based optimization

approach (ug,).
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Chapter 5

Inventory Control for Single-Stage
Make-to-Stock System

In this chapter, we switch gears and consider the second instance of a stochastic network
problem we address in this thesis, that is, inventory control in supply chains subject to QoS
requirements. We start the investigation of such problems with the simpler case of single-
stage systems. The remainder of this chapter is organized as follows. In Section 5.1 we
provide the model of the single-stage, single-class, production-inventory system, introduce
the base-stock policy and formulate the problems we will consider. In Section 5.2, we
analyze the base-stock policy and obtain the approximations on the stockout porbability
and average inventory cost using large deviations techniques. In Section 5.3, we present the

numerical results.

5.1 The Model

We consider the make-to-stock manufacturing system depicted in Figure 5.1. Demand is
met from the finished goods inventory (FGI) and unsatisfied demand is backordered. We
assume a discrete-time model, where time is slotted and the state of the system is examined
at the beginning of each time slot n (periodic review policy), with n being in the set of
integers Z. Let D, denote the demand arriving during time slot n, and B, denote the
amount of goods that the production facility can produce (capacity) during the same time

slot. Let also I, denote the available inventory at the beginning of time slot n (without
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Finished goods Backordered Demand

— — D,

Production Facility

o]
B

Figure 5.1: The model of a make-to-stock system.

taking into account D, and the amount of goods that the machine produces during time
slot n). We allow I, to take values in the set of real numbers R; when nonnegative it is
equal to the amount of available inventory, and when negative it is equal to the amount of
backordered demand.

We assume that the demand {D,; n € Z} and the service {B,; n € Z} processes are
arbitrary, stationary, and mutually independent stochastic processes, that satisfy certain
mild technical conditions (a large deviations principle, see Assumption B for details). These
assumptions are satisfied by a fairly large class of stochastic processes, which includes
renewal processes, Markov-modulated processes (where D, for example is a function of an
underlying Markov process), and general stationary processes with mild mixing conditions.

For stability purposes, we further assume that

E[B,] > E[D4], (5.1)

which by stationarity carries over to all time slots n.
We will implement a base-stock policy which maintains a safety stock or hedging point
of w. More specifically, the system produces when the inventory is below w and idles

otherwise. According to this policy the inventory evolves as follows:

In¢, = min{l, — Dp + By, w}. (5.2)

We quantify customer dissatisfaction by the probability, P[I, < 0], of not being able to meet

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



incoming demand immediately (stockout probability). Let € be a desirable upper bound on
the QoS level. We are interested in selecting a hedging point w that solves the following

optimization problem:

minimize Cost = hE[[]]] (53)

subject to P[[, < 0] <,

where h is a given scalar and I} denotes max{[l,,0}. We will be referring to the constraint
P[I, <0l <e

as the service-level constraint. To achieve our goal we need to compute P[[, < 0]. An
exact analytic expression is impossible to obtain, especially in view of the complicated,
autocorrelated, models for the demand and production processes. To that end, either
simulation or asymptotic techniques can be applied (see [PLCZ01]). We will resort to an
asymptotic large deviations analysis.

5.2 Large Deviations Analysis

Define the shortfall L, as the gap between the current inventory and the hedging point,

ie.,

L,&w-1I,.

In terms of L,, Equation (5.2) can be written as
and we have the following equality

P[l, < 0] = P[L, > w].
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We can interpret L, as the queue length of a discrete-time G/G/1 queue with D, arrivals
and B, server’s capacity during time slot n. On a notational remark, in the sequel we
will be dropping the reference to the time slot (subscript n) when referring to steady-state
quantities. For example, we will be denoting by L the steady-state queue length at an

arbitrary time slot.

5.2.1 Stockout Probability

The following proposition characterizes the tail of the shortfall process (see [BPT98b] for a

proof in the continuous time domain).

Proposition 5.2.1 (Single-Stage) Under Assumption B, the steady-state queue length

process L satisfies

lim — log PL > w] = ", (5.5)

w—o0 W

where 8* > 0 is the largest root of the equation
Ap(6) + Ag(—6) = 0. (5.6)
Intuitively, for large enough w we have
P[I <0] =P[L > w] ~ e ¥, (5.7)

therefore, the minimum w that guarantees the stockout probability to be below ¢ is

log e
o~ -

Notice that Ap(68) + Ag(—8) is zero at the origin and has negative derivative at the same
point (due to (5.1)). Figure 5.2 depicts the root of the equation A5(6) + Ag(—0) = 0. In
the extreme case that Ap(6) + Ag(—6) < 0 for all § > 0 we will say that 8* = oo. In this

case, no stockouts occur and a safety stock of zero should be maintained (Just in Time
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(JIT) policy).

0 g [

A5(8) = An(—8)

An(—-8)

Figure 5.2: The largest root of \5(8) + Ag(—6) = 0.

To improve the accuracy of the asymptotics, especially for fairly large €’s, we can intro-

duce a prefactor f(w) and consider the approximation
P[I < 0] =P[L > w] = f(w) e,

where f(w) is in general any function that satisfies 135# — 0 as w — oc (cf. Proposition
5.2.1). Note that this is true for any polynomial function of w. For renewal demand
and production processes f(w) is a constant ([Asm87]) and it is equal to 1 under M/M/1
assumptions. We will use a constant for the more general case as well. In particular, we

will set f(w) = ¢ which yields the following approximation
P[I <0 =P[L > w]=ce . (5.8)

Thus, the hedging point satisfies

= _M, (5.9)
0:-

The coefficient c can be estimated by assuming that Equation 5.8 is the exact distribution

of the queue length process. By matching expectations, we obtain

o oo . c
E[L] = / P[L > w]dw = / ce ¥ dw = -,
0 0 9
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therefore,

¢ = 6*E[L]. (5.10)
Note that E[L] is independent of w, and can be obtained either by approximations of the
expected queue length in a G/G/1 queue (as in [BP01]) or by simulation.

5.2.2 Inventory Cost

We finally consider the inventory cost. Let C(w) be the expected inventory cost, when we

fix the hedging point to w, i.e.,
C(w) = hE[IY], (5.11)

where h is a given constant. Using the equivalence to the make-to-order system we obtain
C(w) =hE[(w — L)7]

=hE[max(w — L,0)]

=h(w — E[L] + E{max(L — w,0)]). (5.12)
Using the asymptotic in (5.9) we have

E[max(L — w,0)] =/°°P[ma.x(L —w,0) > z] dz
0
=/°°P[L—w>1:] dz
0

- w -
~ce~ ! / e % dx
0

—wé”*
=c (5.13)
Using (5.9) we obtain the following approximation for the expected inventory cost
C(w) = h(w — E[L] + E[L]e~%%"). (5.14)

Summarizing the results in this chapter, large deviations techniques yield (asymptot-
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ically exact) approximations for the stockout probability in (5.9) and expected inventory
cost in (5.14). These expressions can be used in the optimization problem (5.3) to obtain

the proper hedging point w.

5.3 Numerical Results

In this section we provide numerical results to demonstrate the accuracy of the large devi-
ations asymptotics developed in Section 5.2 We consider only the stockout probability as a
performance metric.

The demand and production processes are discrete-time Markov modulated processes

D B
0.8 0.85
02 Q@DM 0_15
0.4 0.3
5 )

(see Figure 5.3).

r = (5.10) r={(0.14
E{D,] =8.33 E[B.] = 10.35
Var(D,) = 5.56 Var(B,) = 37.79

Figure 5.3: The models of the demand and production processes.

Both D and B are modulated by a two-state Markov chain. By r we denote the vector of
demand or production amounts at each state of the corresponding Markov chain. That is,
D, can be either 5 or 10 and B,, can either be 0 (machine down) or 14 (machine working).
The load of the system is nearly 0.8. The transition probability matrices of Markov chains

that modulate {D,} and {B,} are listed as follows:

0.2 0.8 0.15 0.85
Pp = ; Pp=
0.4 0.6 03 0.7

We have the following LD result for this problem:

6* =0.120,
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The expected shortfall from simulationi is E[{L,] = 6.402. Therefore, the analytic expression
for the optimal hedging point (5.9) becomes

- _ log 51305703
0.120

w

Table 5.1 compares the results of the LD expression with the brute-force simulation. The
refined LD approximation results are very accurate and the results are very close for most

€’s, even for large €.

LD Results | Simulation Results

€ w w P[X, <0]
0.3 7.84 8 0.326
0.2 11.22 11 0.194
1.0 x10~! 16.99 17 | 0.996 x 10~!

50 x 1072 22.77 23 | 4.852 x 102
1.0 x 1072 36.18 36 | 1.040 x< 10~*
50 x 103 41.96 42 | 5.061 < 10~

1.0 x 10~ 55.37 55 | 1.072 x 1073
50 x 10~% 61.14 61 | 5.220 < 10~
1.0 x 10~% 74.56 75 | 0.964 x 10—+

5.0 x 107> 80.33 80 | 5.283 x< 10~°
1.0 x 10~° 93.74 94 | 0.983 x 1072
5.0 x 107° 99.52 100 | 4.885 x 10~°
1.0 x 10™° 112.93 113 | 1.059 x 10~°

Table 5.1: Comparing the analytical the LD expression for the stockout prob-
ability with the simulated values. The first column lists the required stockout
probabilities, ranging from 0.3 to 107%. The second column provides the hedg-
ing points obtained by the LD expression. The next two columns provide the
hedging points used in the simulation and the stockout probability obtained.
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Chapter 6

Inventory Control in Supply Chain

Management: The Local Inventory Case

In this chapter, we consider multi-stage supply chain operating under a base-stock policy.
Each stage has information about its local inventory only and we want to satisfy the service-
level constraint on the finished goods of the supply chain. We propose a decomposition
approach based on large deviations approximations and the results for single-stage system.
The remainder of this chapter is organized as follows. In Section 6.1, we provide the model
details of the multi-stage supply chain. A decomposition approach based on large deviations

analysisi is developed in Section 6.2.

6.1 The Model

= i
= Iz z Finished goods Backordered Demand
2 < =z D!
= _— e | B —_— = —_— —_— n
= _ P — | =
& M B 2 & t
= 1 £ | = I = I
# i @& #
i
By B? B,

Figure 6.1: The model of the supply chain.

Figure 6.1 depicts the supply chain model we consider in this and the following chapter.
This system produces a single product class and consists of M production facilities in

tandem. We will be referring to these facilities as stages of the supply chain and say that
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production consists of M stages. External demand is met from the finished goods inventory
maintained in front of the stage 1 production facility, and is backordered if inventory is not
available. Every production facility is fed by its upstream facility; in particular, to produce
one unit facility z, ¢ = 1,..., M — 1, requires one unit of the product of facility z — 1.
We assume that facility M is fed with an infinite supply of raw material. which implies
that no material requirement constraints are in effect there. In front of every facility g,
i=2,...,M, there is an inventory buffer which holds the final product of that facility and
from which facility ¢ — 1 draws material for its production. We assume a periodic review
policy where time is divided into time slots of equal duration. For all z = 1,..., M and
n we let B denote the amount that the facility at stage i can produce during time slot
n (production capacity). We also let D} denote the amount of external orders arriving at
stage 1 during time slot n. Finally, we let I., i = 1,..., M, denote the inventory in front of
stage 7 at the beginning of time slot n. In intermediate stages i = 2, ..., M, the inventory
I: is constrained to be nonnegative. In contrast, we allow the inventory at stage 1. I}, to
take negative values to denote backordering; when I} is negative —I! is equal to the amount
of backordered demand.

The system evolves as follows. At the beginning of time slot n + 1, the inventory at
stage 1 is given by

Iy =1y — Dy + Py,

where P! denotes the amount of products produced during time slot n by the facility at stage
1, which is determined by the production policy we select and confined by the production
capacity Bl and the available upstream inventory I2. The quantity P! can be also viewed
as the demand for stage 2, which operates in a similar manner and generates demand for
stage 3. Thus, the whole supply chain is driven by the external demand.

The demand process {D.; n € Z} and the production processes {Bi; n € Z}, i =
1,....M, are arbitrary stationary stochastic processes that satisfy certain mild techni-

cal conditions (some form of a sample path large deviations principle). These conditions
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are satisfied by renewal processes, Markov-modulated processes, and in general stationary
processes with mild mixing conditions (for details see Bertsimas, Paschalidis, and Tsitsik-
lis [BPT98a, BPT98b, BPT99]). For stability purposes we assume that

E[D}!] < min E[Bi], (6.1)

1=1,...,1

which by stationarity carries over to all time slots n. Stability can be shown under both
base-stock policies by using techniques from Baccelli and Liu [BL92]. For the case of an
echelon base stock policy a stability proof is given in Glasserman and Tayur [GT94].

Our objective is to find a production policy within a selected class of inventory policies
that minimizes expected inventory costs and guarantees that the steady-state stockout
probability P[I} < 0], at some arbitrary time slot n. does not exceed a desirable small value
€. In this chapter, we will propose a policy for the case that each stage i has knowledge of
its local inventory I} only. In particular, every stage i sets a hedging point or safety stock w;
for its local inventory I and implements the production policy: produce if I* falls below
w;, and idle otherwise. In the simpler single-stage (M = 1) this policy has been analyzed in
Chapter 5 and an appropriate hedging point has been selected to maintain P[I! < 0] < e.
In a multi-stage system, however, there is strong coupling between stages since upstream
inventory can constrain downstream production, which makes exact analysis particularly
hard. To bypass this problem, we will use a decomposition approach. More specifically, we
will focus in a regime where coupling between stages becomes weaker. For every stage this
is the case if the safety stock in the upstream buffer is very large, implying that downstream
production is rarely constrained by upstream inventory availability. In effect, each stage
can be viewed as an independent single-stage system, and the results in Chapter 5 can be
applied. To that end, though, we need to characterize the demand for every stage ¢ by
“propagating” the external demand through the downstream stages 1,2,...,7 — 1.

We need to obtain the stockout probability in order to be able to maintain the service

level constraints. Again, an exact expression is intractable, especially in view of the rather
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complicated (autocorrelated) models for the demand and production processes. We will
employ large deviations theory. In the regime of small stockout probability (or equivalently,
large safety stocks) stockouts are rare events and are amenable to large deviations analysis.
We will provide numerical results to demonstrate that the large deviations asymptotics are

accurate when compared to simulations, even for fairly large stockout probabilities.

6.2 The Decomposition Approach

We propose a base-stock policy that maintains a safety stock equal to w; for the (local)
inventory of every stage ¢, ¢ = 1,..., M. In particular, stage i produces until the local
inventory I’ reaches the hedging point w; and idles if I} > w;. The amount produced by
stage ¢ constitutes demand for the upstream stage i+ 1, for i = 1,..., M — 1; we will denote
it by Di*!. Note that the demand for stage i, D., i = 2,....M, is constrained by the
downstream capacity B! and the available inventory I}.

The dynamics for the supply chain are

Ii,, = min{l; -D:+ B, Il —D\+ ' w}, i=1....M-1, (62)
Irzlb-li-l = min{[r‘:l - D:’:I + Br?[v wx\'l}- (6.3)

The demand for stage 7 (or. equivalently, production of stage ¢ — 1) is given by
Di=I\-IT'+DY i=2,... .M
As in the single stage case, we define the inventory shortfall for stage 7 as follows:
L:l éwi—l:;, i=1,--- , M,
and the dynamics of the supply chain can be written as

n+t = max{L; + Di — B}, Ly, + Dy, + L}}' — wiy1.0}, i=1,...,M -1, (64)
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LM | = max{LM + DM — BM 0}. (6.5)

n+l
The demand for stage ¢ can now be expressed as
Di=Li'-Li N +DY,  i=2...., M. (6.6)

The major difficulty for analyzing this model and characterizing the stockout proba-
bilities is that the production is constrained not only by its own capacity, but also by the
upstream inventory. To bypass this difficulty we will decouple the various stages by ignoring
the upstream inventory constraint on the downstream production. We can intuitively argue
that this decomposition is in fact accurate when the inventory level of the upstream stage
is high enough; then the influence of the upstream inventory constraint will be insignificant
when compared to the capacity constraint. More specifically. the proposed decomposition

amounts to assuming that the system operates according to a policy which satisfies
ri*r'‘*>py i=1,...,.M—1,

almost surely for all time slots n. As a result, the dynamics of the supply chain can be

simplified as follows:
[Til-{'-l =min{[:l_D:l+B:nwl}7 i‘:lv"' ,A/I, (6.7)

or

L: ., = max{L}, + D} — B%,0}, i=1,---,M. (6.8)

That is, each stage behaves exactly as a single-stage system.

Next note that the dynamics in (6.8) are exactly the dynamics of M decoupled make-
to-order G/G/1 queues. In particular, as in the single-stage problem discussed above, L}
can be interpreted as the queue length in a discrete-time G/G/1 queue with arrival process

{Di;n € Z} and service process {Bi;n € Z} (see Figure 6.2). Hence, Proposition 5.2.1
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holds. To apply it, however, we need the large deviations rate functions of the processes
{Di;n € Z}. Fori =1, {D};n € Z} is the external demand process, whose large deviations
rate function is assumed known. For the remaining stages i = 2,..., M, recall that D} is
the demand for stage ¢ generated by stage ¢ — 1. In the equivalent make-to-order version of
the system D! can be interpreted as the number of departures from the stage i — 1 queue
during time slot n. To see that consider the queue corresponding to stage ¢ — 1 which has
queue length equal to Li~! at time slot n. Equation (6.6) simply states that the queue
length at slot n (Li~!) plus the number of arrivals at slot n (D:~!) is equal to the queue

length at slot n + 1 (L;;ll) plus the number of departures during slot n (D).

OM —
D+t . D:x

Figure 6.2: The equivalent G/G/1 queue of stage i, i = 1,--- , M, in a decou-
pled multi-stage supply chain.
The following theorem characterizes the large deviations behaviour of the departure
process {D:;n € Z}, for all i = 2,...,M. This theorem is a corollary of a result in
Bertsimas. Paschalidis, and Tsitsiklis [BPT98b] which characterizes the departure process

of a G/GI/1 queue using a continuous-time model !.

Theorem 6.2.1 (Departure Process) The partial sum of the departure process of the

G/G/1 queue of stage i — 1 satisfies

! =~ . :
nli)ngoﬁlogp ZD; > na =—AD'*,-'(a), i=2,...,.M, (6.9)
j=l
where
Ast(a) = A% (a) + ALE, (), (6.10)

'In [BPT98b], the proof has been carried out for a renewal service process; we have noted though that a
very similar proof applies to general, potentially autocorrelated, stationary service processes that satisfy a
certain mild mixing condition.
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and

Affi(e) = sup [6a — AS.-.(6)] .
{6} A;,_l (0)+A g1 (—0)<0}

Proof: We prove the result by establishing a correspondence with a continuous-time G/G/1
queue and invoking the result in [BPT98b]. Consider first the queue corresponding to stage

i — 1 with queue length L' at time slot n. Recall that the Lindley equation for this queue

length is
L7l = max{L; '+ Di7' — B L 0} (6.11)
Adding Equation (6.6) for stage z over all time slots 1,2, ...,n, we obtain
S pi=ri' -Ln + Y Dt (6.12)
7=1 1=1

Consider next a continuous-time G/G/1 queue and let us denote by A, the nth interar-
rival (interval between the arrivals of the n — lst and nth customer), and by S,, the service
time of the nth customer. The waiting time, W,,, of the nth customer satisfies the following

Lindley equation

Wn = max{Wn_| + Sn_; — An,0}. (6.13)

The interdeparture time, Z,, of the nth customer (time interval between the departure

times of customers n — 1 and n) can be expressed as

Zn=Wnp—Wp_1+An+ S, — Sn1- (6.14)
Summing up the above over all customers 1,...,n we obtain
n n
Y Zi=Wo—Wo+Sn—So+ DA (6.15)
Jj=l1 =1

Compare now Eqgs. (6.11) and (6.12) with (6.13) and (6.15) respectively. It can be seen that
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by making the substitutions
Wj = Lj+lv Aj = __D;'_—l, Sj—l = —BJ', Zj = ——D;"

for all j, 3_7_, D! has the same large deviations behaviour as ~ }°7_, Z; ?. Hence, invoking
the result for the departure process of a continuous-time G/G/1 queue from [BPT98b] we
obtain the large deviations characterization of the process {D}, n € Z} as it appears in the

statement of the theorem. o

Bertsimas, Paschalidis, and Tsitsiklis [BPT98b] also show that the departure process
satisfies the exact same technical properties that the arrival process does (some form of
a sample path large deviations principle). This is key because to apply Proposition 5.2.1
to every stage i = 2,..., M in isolation we need the demand process D' to satisfy a large
deviations principle. Moreover, to derive the demand for the upstream stage 7+ 1 we need to
apply Theorem 6.2.1 which requires some form of a sample path large deviations principle.

We now have all the ingredients to analyze L for every stage 7 in isolation. The result

is summarized in the following theorem.

Theorem 6.2.2 For every stage i = 1,..., M of the decoupled system, the steady-state
queue length L' satisfies
1 .
lim —logP[L* > w;] = —67 ;. (6.16)
wy;—00 Wy

where 0} ; is the largest root of the equation
A7, (0) + Ag:(—6) =0, (6.17)
and AB,- 8), fori=2,...,M, is the convex dual of A"D*,-'(a):

A}:(8) = sup(6a — At (a)), (6.18)

ZNote that for large values of n, S» and S in (6.15) are constants and do not affect the large deviations
rate function.
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where A'Df(a) is as spectfied in Theorem 6.2.1.

Assume now that the stockout probability for stage 1 needs to be upper bounded by
some €;. We can then select the requirement for the stockout probability of stage ¢, ¢;, to
be the same as, or an order of magnitude less than, the corresponding requirement, €;_,
for its downstream stage z — 1. Using the results of this section, we can obtain the hedging

points:
loge;

w; = P ‘i=1,...,M.
oL,i

We can improve the accuracy of the asymptotics, especially for fairly large €’s by introducing
a constant prefactor c; for each decoupled stage 7 as for the single-stage systems. c; can be

estimated by (refer to Chapter 5)
ci =67 E[L']. (6.19)

Note that in the decoupled system E[L!] is independent of w;, and can be obtained either
by approximations of the expected queue length in a G/G/1 queue (as in [BPOl]) or by
concurrent simulation (where one sample path of the stochastic processes involved is used
to obtain E[L!] for all stages i). Hence, the hedging point satisfies
w = —0BlE/a) (6.20)
0L
Numerical results that help assess the accuracy of the large deviations asymptotics are given

in Section 7.6.
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Chapter 7

Inventory Control in Supply Chain
Management: The Multi-echelon

Approach

The policy obtained via the decomposition approach, although it maintains the service-
level constraint at stage 1, might not necessarily be efficient in terms of expected inventory
cost. Information of inventory availability in other stages might lead to lower such cost
by giving the opportunity to trade-off inventory between different stages, i.e., lower the
required safety stock in stages where inventory costs are high and compensate by increasing
the safety stock in stages where costs are lower.

In this chapter we consider such a situation that each stage i has knowledge of the
total downstream inventory I} + I?~! 4 ... + I!. We will implement another kind of base-
stock policy. In particular, every stage ¢ sets a hedging point or safety stock w; for the
total downstream inventory I’} + [i~! + ... + I! and implements the production policy:
produce if I} + I:7' + ... + I} falls below w;, and idle otherwise. For the total downstream
inventory from stage ¢ we will be using the notation X = I + 3" ' +...+ I}, i=1,..., M;
we will be referring to this quantity as echelon inventory at stage i. In Section 7.1, we
introduce the echelon base-stock policy. In Section 7.2, we analyze the supply chain under
this policy using large deviations techniques. In Section 7.3 we propose an approach to
refine the large deviations results. We formulate the optimization problem of minimizing

expected inventory costs subject to given service-level constraints in Seciton 7.4. We discuss
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extensions to the multiclass case and lost sales model in Section 7.5. Numerical results for

both decomposition approach and multi-echelon approach are presented in Section 7.6.

7.1 The Multi-echelon Approach: A Global Information Case

In this section we consider the case where echelon inventory information is available at every
stage ¢ = 1,..., M. This will allow us to trade-off inventory between various stages in order
to reduce expected inventory costs while maintaining the service level constraints.

We will be using the notation introduced in Section 6.1. As we noted above, X} denotes
the echelon inventory at time slot n and stage t =1,..., M. We have

Xi=LI+.. +I!=r+X"! i=1,...,M.

n n

We implement an echelon base-stock production policy that maintains a hedging point or
safety stock of w; for the echelon inventory at stage i. More specifically, the facility at stage
i produces until X reaches w; and idles otherwise. Clearly, w; < ws < --- < wyy. Figure
7.1 depicts the supply chain model and indicates the stages corresponding to the echelon

safety stocks.

| | E
'é é g Finished goods Backordered Demand
: 3 3 D
&~ —_— ] e PE — = —_— — n
= ~ -
s o E)
= A &% %
; & E n E I
M y
B; B; B,

Figure 7.1: The supply chain model under the echelon base-stock policy.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As in Section 6.2, we define the shortfall of echelon ¢ inventory as

er £ w; — "Yriu (7.1)

which implies P[X: < 0] = P[Y;! > w;]. The dynamics of the echelon inventory are:

X, = min{X! —-D!+Bi w, X -DL+ '}, i=1,...M-1, (7.2

.Y,‘I\_IH = min{X,‘y - D,ll + B,‘y, war}. (7.3)

In terms of the shortfalls the dynamics can be written as

. = max{Y+ D} - B.,0, Y '+ DL — (wipy —wi)}. i=1.... .M~ 1, (74)
Y., = max{V;' + D, - B 0}. (7.5)

7.2 Large Deviations Analysis of the Stockout Probability

Our first result, which is the main result of this section, is a large deviations result for the
steady-state probability P[Y'! > w,], which is equal to the steady-state stockout probability
P[X! < 0]. Recall, that as in the previous section we drop the subscript n when referring
to steady-state quantities.

On a notational remark, in the sequel we will be using O; to denote the ith-dimensional

simplex, i.e.,

0i= (6[7"'7£i)|£j€[071]3j=17"'7i7 Zf]zl
=1

Theorem 7.2.1 Assume the hedging points wi,ws,--- ,war in the multi-echelon system

(cf. (7.4), (1.5)) satisfy
wi=.3i-lwly i=27---1M3

where B; are constants and 1 < 81 < --- < Bar—1. The steady-state shortfall Y of echelon
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1 satisfies

lim LlogP[Yl > wy] = —6;,. (7.6)

w1 —3C W)

where 0, | is determined by

a>0 q@ rg—r)=a

6., = min [inf L. (AL (zo) + AGi(z1)) .

1 ,
inf — i b AS *=a(r2)) ...,
;x)ﬁ(; a zo—flelgft"zzzzaﬂl (ADl(xO) + 51 B‘(Il) +€2AB‘(£2)) ; ’
(£1.£2)€02
1
inf & inf -t AT = . (7.7
é>0 a xo-.&xl—..._I?M::M=aﬁm-1 (on (z0) + &1 B! () + - fMABM (xM)) ] @1

(&1,---6rr)EO s

To establish this result we will (i) obtain a sample path characterization of Y;!, (ii) obtain a
lower and an upper bound on P[Y! > w;], and (iii) show that the upper and lower bounds
match up to the first degree in the exponent.

We start by obtaining a sample path characterization of Y,!. Suppose that at time 0,

the echelon inventories are all equal to the corresponding safety stocks. i.e.,
Yy =0, Vi
At time 1, the shortfall of the echelon 1 inventory is

Y} = max{Yy + D} - B§,0,Y$ + D} — (wy — w)}
= max{0,D} — B}, D} — (wg —wy)}
= max{0, D} — min{B}, (wz — w;)}}

= max{0, Dé - r{‘l},

where r{ | £ min{B{, (w2 — w;)}. Figure 7.2 depicts a certain graph in which r}, can be
interpreted as the length of the shortest path from point 1 (corresponding to stage 1) at
level O to level 1. In general, we will use 7, ,, to denote the length of the shortest path

among the paths with m hops for stage 7, where n is the number of levels on the graph. For
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the remaining stages 7, ¢ = 2,--- . M, we have a similar characterization, that is,
Y} = max{0,Dg§ —r} }.

where 7 | = min{B§, (wi+1 — wi)}, i =2,...,M — 1, and ) = B§’. In accordance with
the notation we just introduced, note that in the graph of Figure 7.2 r{'l, i=1,---,M,

denotes the length of the shortest path from point z at level 0 to level 1.

Level 1

Levei 0

1 2 M1 M

Figure 7.2: The paths for each stage at time slot 1 (one-level graph).

At time n = 2,

Y) = max{0,Y! + D}~ Bl Y2+ D} — (w2 —w,)}
= max{0,D} — B},D} — (w2 — w,), D§ + D} — B} — 7‘%,1’
Dé + D{ - 7'%,1 — (we —wy)}
= max{0, D! — min{B!, (ws ~ w)}, D{ + D{ — min{B!} + B},
Bi + (wp — w1), (w2 — w1) + Bf. (w2 —wy) + (ws —w2)}}-

= ma.x{O.D{ —'r‘_g,leD(li'f‘D{ _rQI'?.}’

where v}, £ min{B], (w2 — w;)} and rj, £ min{B] + B}. B} + (w2 — wy), (w2 — wy) +
Bj, (w2 — w;) + (w3 — w2)}. Figure 7.3 depicts a two-level graph in which 7}, denotes the
length of the shortest path from point 1 at level 0 to level 1, and r;§‘2 denotes the length

of the shortest path from point 1 at level 0 to level 2. Similar results can be obtained for

other stages.
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Level 2

Lu-yn-l 1
L A N G
Level )
i 2 -1 M
Figure 7.3: The paths of each stage at time slot 2 (two-level graph).
In general, the shortfall of stage 1 at time slot n is given by
Y.l = max{ 0, max Z Dl_] n‘m s (7.8)

1<m<n

where r, , is equal to the length of the shortest path from point 1 at level 0 to level 7 in an
n-level graph. A similar characterization of Y;} in terms of shortest paths in a graph is given
by Glasserman [Gla97], but for renewal demand and deterministic production processes.
As we have argued in the Introduction, and can be seen in the sequel, stochasticity in the
production processes and dependencies in all processes involved substantially complicate
the picture and require a different and more involved large deviations analysis than the one
in [Gla97].

Let us denote by {Dl:n € Z} the time-reversed stochastic process obtained from the
demand process {DL;n € Z}. In particular, for any k € Z, (D!, D}, ..., D}) has the same
distribution as (D},D}_,,...,D}). Similarly, let {Bi;n € Z} denote the time-reversed
production process {B:;n € Z} of stage ¢, i = 1,..., M. Notice that due to stationarity

=1 D}_; has the same distribution as 3°7%, D}. More generally, Zj-:k D} (or Z;=k D}
has the same distribution as Z‘ 25t D} (or Zl kel D}), that is, the distribution of the

partial sum of demands (or time-reversed demands) during a time period depends only on
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the length of the period and not on the starting time. The same is true for the production
processes as well. Moreover, demand and production processes are independent of each
other. Using these observations, Y;! has the same distribution as the right hand side of the

following equation

m my
D - i .
Yn1 = max { 0, max E Jl — min E Bil + {1 (we — wy)
I<m<n my +l +ma+la+---+my=m ¢
Jj=1 0<m;<m, l;€{0,1} =1
Li=0= mipy,lig1, mpr=0
ky+m2 kyp—1+myy
. .
+ 3 Bi+bws-w)+---+ > BN, (79
i=k1+1 i=kyg_1+1
.D., e ey . ; .
where “=" denotes equality in distribution, and &; = ¢ + 23:1 m;, forie =1.....M — 1.

Due to the stability condition (6.1) a steady-state distribution exists for Y;!. In particular,

Y,! converges to Y! as n — oo. Therefore, using (7.9) we obtain

D Hi . .
Yl = max S[Dm - min (Slel +l[('lU2 - wl)
m20 ! my+l+ma+la+-+my=m ’
0<m,;<m, ,€{0,1}
ll =O=’mi+l vl|+l yoo IR =0

B2 BM
+Skx+l.k[+m2 + lQ(WS —_ 'LU‘.Z) +---+ Sk.w—l'f'lyk.w—['t"m‘\l)] . (7.10)
where we use the notation introduced in (1.16) with :he convention Z:;k +1 Xi = 0 for any
process {X;; i € Z}. To facilitate handling the above expression, let us denote by G, the
argument of the maximum, i.e.,

D
Y! = max Gp,.
m2>0

We will proceed with establishing the large deviations result in (7.6). To that end, and
in the standard large deviations methodology, we will develop a lower bound and an upper
bound and show that the corresponding exponents match. We start from the lower bound.
We will use the fact that for a process X and its time-reversed version X. A x(6) = A;(9),

which can be seen from (1.6). Consequently, A (a) = A'_{_ (a).
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7.2.1 Lower Bound

The lower bound result is summarized in the following proposition.

Proposition 7.2.2 Assume the hedging points wy, ws,--- ,war tn the multi-echelon system

(cf. (7.4), (7.5)) satisfy

'wi=ﬁi—l'wls i=2~.’--~,A/I~,

where B; are constants and 1 < B; < --- < Bar—1. The steady-state shortfall Y'! of echelon

1 satisfies

liminfilogP[Yl > w) > -0; . (7.11)

w] —0o0 [_Ul
where 0¢, | is given in (7.7).

Proof: For any m > 0 we have
LlogP[Yl >wy) = ilogP[ma.xG > wi] 2 ilogP[G > wy] (7.12)
w) ==t wq m>0 m= — wp m = "k ’

Choose ¢ > 0 and write w; = ma. Then w; — w;—) = m(Bi—) — Bi—2)a for i = 2,..., M,

where 8y £ 1. Using (7.12) we obtain
1 1 1 .
— log P[Y"' > wy] > — log P[Gr, > mal. (7.13)
wi ma

and since we are interested in the regime w; — oo it suffices to analyze the behaviour of
the right hand side of (7.13) for large values of m. To that end, select z; > 0,71 =0,.... M,
lie {0,1},i=1,.... M —1,andm;, i =1,...,M such that m) + {; + mao +lp +... +

a1 +mpr =m,

mzg - miz; — Lim(B, — 1)a — mazy — lom(B2 — Br)a — - -+ — mpyTm = ma,
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and [; = 0 implies m;41,liy1,...,mpyy =0fori=1,.... M — 1. We have

P[Gm > ma]
>P max sbt _gB'  _ I (wy—w
- [ my+ly+---+my =m ( Lym 1 my 1(w2 1)

0<m;<m, l;€{0,1}
Li=0=>m;p1 ligt1,- mpar=0

B'.’ , B\I

= Skprthyrmy —l2(ws —w2) = = Sg ik, 1+mM) 2 ma]
D! B2 BM

2P [S]_’ Sl my llma(,Bl - 1) - Sk1+l,k1+TR2 —_— SkM v+ ka1 +mar 2 ma

— BM

=P [Sl’ Sl L Skl'H kitma = 7~ Skagoy+LEa—1+mar

> ma(l + LB — 1) + (B2 — B1) + -+ + ly—1(Bar—1 — Bar—2))]- (7-14)

We can distinguish M cases, depending on the values we select for z;,[; and m;. In partic-

ular,

Case 1: Select [} = --- = [p;—; = 0 which implies m|; = m and ¢ — z; = a. Then from

(7.14) we obtain

P[Gm > ma] 2 P (S5, - 5B, > ma]

= P[S > mzo]P[St m <mzi]>e —mlAG @A )+ (7 15)

where the last inequality above is due to the LDP principle for the processes D!
and B! (cf. (1.14) and (1.15)) and holds for large enough m and all € > 0. Using
(7.13), taking the limit as w; — oo, and optimizing over zg,z; and a to obtain a
tighter bound, and recalling that demand and production processes have identical
large deviations rate functions with their time-reversed versions, we conclude

hmmf—logP[Y1 >wy] > — mf — inf [A *(z0) + A (z1)]- (7.16)

w)—00 W a>0a ro—z1=
Casei,i=2,..., M. Select {,..., iy =1, l;,...,Ipr—y = 0. This implies g — 171 —
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o —&ixi = afi—y, where § = T i =1,..., M. Then from (7.14) we obtain

PG, > ma] >P [SEI:’I - SE:m -t Sk-'i-1+l.k.'—1+m-’ 2 maﬂi—l]

2 31 =13
>P[SP, > mzo|P[Sm, < mizi]---PISE L1k 4m, S mizi]

Ze-m[.\;; (zo)+E1A G (Z1)++E, ;\;.,T(x;)-i-e]’ (7.17)

where the last inequality above is due to the LDP principle for the processes D!,
B!,... B! (cf. (1.14) and (1.15)) and holds for large enough m and all € > 0. Note
that since Ty + ) + mo + o + ... + lar—1 + mar = i, our selection of {;’s and m;’s
implies rn| + my + --- +m; = m — (¢ — 1), which by its turn implies §; +---+&§ =1
as m — oo. As in case 1. we use (7.13), take the limit as w, — oc, and optimize over

Zg,Zy,..-,Z; and a to obtain a tighter bound, that is,

lim infilogP[Yl > wy] >

wp—00 W)
1

_ - . =4 - .. AE— .
a>0a zo—flrl—"l'rlffiri=aﬁ.‘—l[ADl (-'L'O) M fIABl (1'1) * * EIAB‘ (zz)]- (7'18)
(El 7""6‘)60]:

The tightest lower bound is obtained by summarizing (7.16) and (7.18) for all : =
2,....M, ie.,
lim infL log P[Y' > w] > -6 |, (7.19)

Wy =00 W)

where 6¢; | is given by (7.7). [ ]

7.2.2 Upper Bound

Next we will establish an upper bound on the probability of interest. The following propo-

sition establishes the result.

Proposition 7.2.3 Assume the hedging points wy,ws,--- ,wpr in the multi-echelon system
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(cf. (7.4). (7.5)) satisfy

wi=ﬂi—l‘w17 1=2....,M.

where B; are constants and 1 < B < --- < Bar—,. The steady-state shortfall Y'! of echelon

1 satisfies
1 _
limsup — log P[Y! > w,] < -6, (7.20)
wy—oc W1 '
where
6., £ min(6}, 8163,....Br—103%s), (7.21)
and where
6 & sup 0, i=1,....M.
{o>0: sup  (Api(6) + &E1Agi(—0) +--- + &A R (—6)) <0}
(fl ----- ft)eoi
(7.22)

Proof: We have
PlY! > w,] = PlmaxG,, > w]
m2>0

my -+l +ma+la+---+my=m
0<m;<m, ;€{0,1}
L=0=>mp 1 ligr, mar=0

1 . 21
=P [r,f}%f)‘ [Sll?m - min (SIB,ml + L (w2 — wy)

BM
+ooeF Sk.w—r*'l.k.\l-l-i-mu) ] 2 wl]

= D! B!
=P [ma‘x { E‘% (Sl,m - Sk1+l,k1+m ey
Dt Bl BM
lgg%( (Sl,m = Stym, — (w2 —w) — ... — Sk.w-x-f-lyk‘u-ﬁ-m.w 2wy

my +---+myr=m—(M—1)

;)1 31
<P max (8- SEh) 2w+

él él B;\f
+ P ?HI% (Sl,m - Sl,ﬂu T e T ksl kar o +myy 2 BN[—lwl .
my+-+myy=m—(M-1)

(7.23)
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In the second equality above we consider all possible sample paths that can lead to a value
larger than w;. In particular, the first such sample path corresponds to {; = 0, the ith
sample path corresponds to {; = --- =,y =land {; =0, fori =2,...,M — 1, and the
Mth sample path corresponds to {| = --- = ly_; = 1. The first inequality above bounds
the probability of the maximum of all those sample paths by the sum of the individual
probabilities. Hence, it suffices to bound each the probabilities in the right hand side of the

above. We distinguish M cases:

Case 1. For the first probability in the right hand side of (7.23) and for € > 0 we have

’ 31 0 max sb! _s8')] _
P[m% (SID,rln. _SIB.m) 2 wl] SE[e maxn>0(Stm ""‘)]e Gun
m_

S Z E [eo(sl?rln_sér‘u)] e—owl

m>0
< K{(e) + Z em(.’\D‘[(G)-{-;\B-[(—o)-{-(;) e—owl
m>mg
<K\(8,e)e "1, if Api(8) + Ag(—6) <0,
(7.24)

where mg is sufficiently large and ¢; > 0. In the first inequality above we used the
Markov inequality. In the third inequality above we have split the summation in two
parts. Specifically, terms corresponding to m = 0,...,mg are summarized in K7(6).
For the remaining terms we use the existence of the limiting log-moment generating
function (cf. Equation (1.6)). Finally. in the last inequality above, since the exponent
is negative (for sufficiently small ¢;) the infinite geometric series converges to some

K{(8.€¢,) which when combined with K7|(8) yields K(6.¢;). Optimizing now over 6

to obtain the tightest bound yields

P[max (520 - SEh) 2 w| <
Kl(ov el)e—ﬂwx < Kl (0;7 Gl)e_o;u“s (7“25)

inf
{020:1\01 (0)+AB[ (*9)(0}
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where

6; £ sup 6. (7.26)
{620: Ap1(8)+A g1 (—0)<0}
Case i, i = 2,..., M. For the ith probability in the right hand side of (7.23) and for @ > 0
we have
[)l Bl =13
P ey (Sl-m = Stmy =~ Skx_x+l.kg_1+m,) 2 5i—1w1]
my+ma+--+mi=m—(i—1)
Dt o1 fri —08; -
<E [exP {0 %}g‘ff (Sl,m - Slb:mx T T Ski—l+l.ki-l+mi) }Je fr-run
my +--+mi=m—(i-1)
< Z E [ea(sgln‘slé.rlnl —"'—Slcéil._l+l.ki_l+mi)] e~ 9Bi-1un
m2>0
my+--+my=m—((i—1)
< Z ml Sup E [eo(sl?rln —Slé.llnl —"'—ské,'l_[‘?l.ki_[ihm“ )] e"oﬂi—lwl
- m>0 my+--+mi=m—(i—1)

S Z lell(o. el) Sup em('\bl (a)'{"El ‘\él (-0)+"'+€l'\él (—9)7-(,) e-oat—lwl

m>mg (€1,---&)EO;
SKi(B.e)e™it i sup  (Api(8) + &1 A5 (=6) + -+ EA 5 (=) <O,
(51.---,51)60,
(7.27)
where & = m;/m, i = 1,..., M, mq is sufficiently large and ¢; > 0. As in Case 1,

in the first inequality above we used the Markov inequality, in the fourth inequality
above we used the existence of the limiting log-moment generating functions, and in
the last inequality above we used the fact that the infinite geometric series converges

if the exponent is negative. Optimizing over € to obtain the tightest bound

Dt B! 2t
P g}% (Sl,m = Stm, — -0~ Ski-1+1,k.‘—1+m:) 2 ﬁi—lwl]
my+---+m;=m—(i—1)

< Ki(f] . e)e” 0P,
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where

6 £ sup 6.
{020: sup (Apt(8) + &1Ag1 (—6) +--- + E:Agi(—0)) <0}
(1+--+&:)€O;

Summarizing Cases 1, ..., M and using (7.23) we obtain that for all €;,...,epr > 0 and

for some K\ (07,€1), .., Kp(Oyp.€nr)

PlY! > w ] < Ki(6].€)e %% + - + Ky (0}, ear)e 03rPar—1wn, (7.28)
Letting w; — oo we conclude

limsup L logP[Y! > w] < 05, (7.29)

wp—oc W]

where

02,1 £ min(6;, 6163, .- -, Brr—103r).

7.2.3 Upper and Lower Bounds Match

Finally, we will show that the upper bound has the same exponent as the lower bound.

Proposition 7.2.4 It holds

0. = é&,ls
where 07 | and 0—&71 are defined in (7.7) and (7.21), respectively.

Proof: It suffices to show that

. 1 . =4 -— AT R — A. *
B 7 romtimi— 2 riap, (ADE(30) T EAGI@1) o+ GG (20)) = BB =
(€1,---&)€O0;
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Bi-1 sup 01,
{020: sup (ADI(B) +€[ABL(—6)+"'+fiAB|(“9)) <0}
(&1seey £:)€0,

foralli=1,..., M, where 8y £ 1. To that end, notice that

o

Bi-1 sup 8
{o>o0: sup  (Api(8) + E1Ag (—0) +--- + A (—0)) < 0}
(E1,---£)€O,
sup 6.
{o0: , SUF; o (Api(8/Bi—1) + EiApi(—0/Bi—1) + - - - + EiApi(—0/Bi_1)) < 0}
§1,---,6i)€0;

To proceed we will use the following Lemma which was shown in Bertsimas, Paschalidis,

and Tsitsiklis [BPT99].

Lemma 7.2.5 ([BPT99, Lemma 6.2]) For A*(-) and A(-) being conver duals and as-

suming that A(8) < 0 for sufficiently small 8 > 0, it holds that

1
inf —A*(a) = 6",
a>0a

where 6* is the largest root of the equation A(8) = 0.

Notice next that

e (ABi(E0) +EAG (@) + o+ A (@) (7.30)

(€1,---,&)EO;

is a convex function of ¢ as the value function of a convex optimization problem with a
appearing only in the right hand side of the constraints. Moreover, it can be shown that it
is lower-semicontinuous (by [BPT99, Lemma 6.3]), and thus we can apply convex duality
results and use Lemma 7.2.5. Finally, for any a; >0, j =1,...,4, with & +--- + & = 1,

Ap1(0/Bi—1) + E1Ag1 (—0/Bi—1) + --- + EiAgi(—0/Bi-1) is equal to zero at 8 = 0 and has
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negative derivative by the stability condition (6.1), which implies that

sup  (Api(8/Bi—1) + E1A g1 (—6/Bi—1) + - -- + &M g (—0/Bi-1)) (7.31)
(&1,---.£)EO;

takes negative values for sufficiently small 8 > 0. As a final step we show that the expression

in (7.30) is the convex dual of the expression in (7.31). Indeed we have

Sl:p {oa— zo—&1 T —-—&iTi=aBi—1 (A‘D-*: (o) _*.GIA.B_l (z1) +---+ &A;; (.’L’i)) }
(€1,--6i)EO;
=sup sup {6a — A (z0) — E1AGI(z1) —--- — EA i (zi) }
a ro—€1Ty—-=§iTi=ad -1
(511-"'51' )GOI
g — &1y — - - —&iTy « — —

=, Su 6 B —~ AL (zo) — &AL (z1) — - = &GA Y (Ii)}

(&1,---.6)EO;
= sup {Api(0/Bi-1) + E1Ap:(—0/Bi—1) +--- + &Ap (—0/Bi-1)} -

(&1,---,6i)EO;

Combining Propositions 7.2.2, 7.2.3 and 7.2.4 we obtain the main result summarized in

Theorem 7.2.1. Some remarks are in order.

Remarks:

1. Theorem 7.2.1 provides us with the asymptotic decay rate for the overflow probability
of the shortfall, or equivalently, with the asymptotic decay rate of the stockout prob-
ability for the echelon inventory at stage 1. More intuitively, Theorem 7.2.1 asserts
that

P[X! <0] =P[Y! > w] ~ e~ %Gu™1, (7.32)

2. The proof of Theorem 7.2.1 characterizes the most likely path that leads to stockouts

and provides intuition on how they occur. Recall from the proof that we have shown
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(cf. Equation (7.21))
8%, = min(85, 5163, ..., Bar-103):

where 67, i = 1,..., M, is the largest root of the equation sup,  ¢)eco,(Ap1(0) +
E1Agi(=0) +--- + A (—0)) = 0 (cf. Equation (7.22)). Consider the case 6, =
Bi—10; for some i = 1,..., M. where fg £ 1. To avoid degenerate cases assume that
all production processes B‘ have distinct limiting log-moment generating functions
and that 1 < B) < --- < By-1- Let &, j = L.....¢ be the optimal solution of
the optimization problem sup(, _cyeco,(Api(8) +&1Api(—0) + --- + §iApi(—0)) at
@ = 0;. It can be seen that one of the &'s, 1s equal to 1. In particular, £ is equal to
1; otherwise, i.e., if £ = 1 for some j < i, 6] = 07 and Bj-16; will be the minimizer
in the definition of 8¢, | since Bj_lo;- < Bi—10;. Therefore, 87 is the largest root of the

equation Api1(0) + Ag:(—60) = 0 and the stockout probability at stage 1 behaves as

the exponential

e Bi-10]w1 — o—Owi

Considering the single stage result (cf. Proposition 5.2.1) we can say that stage i

production capacity is the “bottleneck”™ and characterizes the stockout probability at

stage 1.

3. Suppose that 8 = (By,--..Bm—-1) = oc. Then from Equation (7.21) we have
lim 0;, =67,
ﬁi?;o G,1 L1
where 67 | is the largest root of the equation Ap1(6)+Ag:(—6) = 0. This is consistent

with the result of Theorem 6.2.2. Essentially, as 8 — oo stages decompose and stage 1

is not affected by the upstream material requirement constraint, which makes Theorem

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2.2 accurate. In general, Equation (7.21) shows that
0c, < 0L, (7.33)

and Theorem 6.2.2 underestimates the stockout probability.

The result of Theorem 7.2.1 can be easily generalized to yield the steady-state stock-
out probability of the echelon inventory X* at the remaining stages ¢ = 2,..., M. More
specifically, we can think of echelon inventory X* at stage i, ¢ = 1,..., M as the echelon
1 inventory of an (M + 1 — i)-stage supply chain starting at the ith stage of the original

system. Hence, generalizing Theorem 7.2.1 we obtain the following corollary.

Corollary 7.2.6 Assume the base-stock levels w;,wi;y,--- ,war, fori = 1,.... M, in the

maulti-echelon system satisfy
Wik = Bpwi. k=1,....M —i,

where Bf+k_1 are constants and 1 < B} <--- <L Bfw_l. The steady-state shortfall Y* of
echelon i satisfies

lim - log P [Y* > w;] = -6, (7.34)

wi—00 UW;

where g, ; is determined by

a>0 @ zo—T;=

1
inf — inf A5 (x0) + EN5 () + Ei i A%y (T4 seees
a>0 @ ro—&ixi—Eiv1Tiv1=a8! ( Dl( )+ B (i) + G B i l+l)) '

(fx Litl )GO‘.'

= - . 1 : . -—
6g,; = min [ inf ~ inf (A (zo) + AL (z)

inf = inf (AR (zo) + &AL (z:) + -+ - + ErA g (zar)) ] (7.35)

a>0 @ ro—gizi—---—Earzar=abl,_,
(&A1 )EON — i1
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7.3 Refining the Large Deviations Asymptotics

Next we will discuss heuristics for refining the large deviations asymptotics. Without loss
of generality we will concentrate on stage 1. The discussion can be easily extended to the
remaining stages based on Corollary 7.2.6.

Theorem 7.2.1 provides us with the asymptotic decay rate for the stockout probability
of the echelon-1 inventory as its base-stock level goes to infinity. This leads to the following

approximation

P[Y! > w] ~ e %", (7.36)

To improve the accuracy of the approximation, especially for relatively large stockout prob-
abilities (i.e., small safety stock w,), we will introduce a prefactor in front of the exponential.
This is in accordance with the development in Section 6.2 where we used a constant prefactor
(cf. (5.8)). A constant prefactor was also used in improving the large deviations approxi-
mation in the multiclass single-stage case considered in Bertsimas and Paschalidis [BPO1].

Here, instead, we will use the following refined approximation

PY' > w] = fi(w,B)e %", (7.37)
where the prefactor f)(w;,8) is a function of wy and 8 = (Bi,....Bar-1) = (%, ey '—‘l’-u-ill- .

As we commented in Section 7.2, as 8 — oc, different stages decouple and the upstream
material requirement constraint becomes insignificant. Thus, to be consistent with the
analysis of Section 6.2 we will select a function f)(w,,8) that converges to a constant as
B — oco. In particular, limg_,oc f1(w1,8) = c1 and limg_, 0 0¢;,; = 07, where c| is equal
to the constant prefactor used in (5.8).

We will be using a function which is piecewise linear in w; and £ to represent f)(w;,f3).
More specifically, we will evaluate the stockout probability P[Y1 > w;] at several sample
points w = (wjy,...,wys) by simulation and then find a piecewise linear function f,(w;,3)

so that f)(wy,B)e %61 matches the true value of P[Y'! > w] at those sample points.
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This requires two main steps: (i) selecting appropriate sample points w = (wy,...,war), or
equivalently points (w,,8) = (w;B1,---,8m-1) = (wy; f‘- et %)’ and (ii) given a “data
set” of ((wy,B); fi(wy,B)) pairs, “fit” a function f;(w;.B) to the points in the data set.
We will start from step (i).

We are interested in selecting sample points (w;,8) such that w; values are scattered
in R*, B are in the feasible set B={8 : 1 <8, < --- < Bum-1}, and adequately capture
the form of fy(w;,B) in all parts of the feasible set. Recall from the proof of Theorem 7.2.1
that (Equation (7.21))

6c,. = min(07.5163,.. ., Bar—164r),

where 67, i = 1,..., M, are defined in Equation (7.22). This characterization of 6g
separates the feasible set B into up to M polyhedral regions depending on which term is the
minimizer in (7.21) (i.e., region ¢ contains those B that lead to 0, | = B;—16;. i =1,... . M,
where By £ 1). We expect the form of f,(w,,B) to be rather different in each of those
regions, hence, to achieve enough “variety” in selecting the sample points we will pick a
number of points in each of those M regions. In particular, we will pick sample points on
the vertices and extreme rays of the M polyhedral regions; any other point in B can be
expressed as a convex combination of those. We can potentially pick some sample points
in the interior of each polyhedral region; this would lead to a better approximation of the
prefactor. For illustrative purpose, Figure 7.4 presents an example when M = 3.

It should be noted that when the supply chain has a large number of stages, the number
of vertices of the M polyhedral regions discussed above is large and it is computationally
expensive to evaluate the stockout probability at all such vertices. Instead, we can select

much fewer sample points and extrapolate to obtain f)(3). We provide a two-stage example

in Figure 7.5.
Suppose next that we have selected a set of K x N sample points (w¥, B, k=1,...,K,
i=1...,Nywl <--- < 'w{(. Let wk? = (w'f,w’f,@{,...,w'fﬂfv,_l) be the hedging point

vector corresponding to (w¥,B'). We simulate the system with each sample point w*+,
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3

Figure 7.4: We depict the feasible set B in a three-dimensional example. The
set B consists of three regions: region [, where 85, = 6}, region II, where
05, = 3165, and region . where 65, = 3.03. As sample points we select
points Q, @2, Q3, Q4, Qs, Q¢, @+. and potentially some additional points
scattered in regions I-II.

k=1,...,K,i=1,...,N and obtain the stockout probability P[Y'! > w¥]. We compute

1 k
fi(wk, BY) = P[Y—Z"ll_]

. wk
e G vt

Thus, we construct a data set consisting of pairs ((w¥, B); fl(w’f, B')). To make this proce-
dure computationally efficient and reduce the required simulation time we can select sample

points wi'l ... wfV with relatively small safety stocks which do not lead to very small

stockout probabilities (such probabilities require long simulation running times). The key
point here is that we use large deviations analysis to obtain the exponent of the stockout
probability; the approximation in (7.36) improves as stockouts become more rare. We only
use simulation to refine the approximation and we will use sample points in the regime
where stockouts are not particularly rare and thus easier to simulate. We will later provide
numerical results (Section 7.6) demonstrating that the proposed procedure leads to very
accurate approximations.

We will now turn our attention to step (ii) mentioned above. That is, we assume we

have a “data set” consisting of K x N pairs ((wy,8); fi(w1,8)) and wish to construct a
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fi1(3), w, fixed

[}
Q
C s
é/l/ =P
I
0t % 3F Tj1

&

Figure 7.5: We consider a system with two stages and assume that 67 >
83. For a fixed wy, fi(w;,B:) is a function of 3,. 4,B,C,D, E, F are sample
points. Suppose that we do not know f;(w;, %g-). We can approximate it by
extrapolating segment BC and DE as shown in the graph. To maintain the
continuity of f;(wi, ) and convexity in region [1,68;/65] and [6}/65,0c), we
select @ as fi(w;,67/65). For points to the right of F/, we set them to be
constant and equal to f)(w;,8F)-

function f;(w;,B) that matches the given data points. More specifically, we will be using
a function f;(w;,B) which is for a fixed w,, piecewise linear and convex function of 8 in
each of the M polyhedral regions comprising B, and for a fixed B, piecewise linear function
of w; € R¥. The selection of such a function is motivated by Equation (7.36). Note that

due to (7.21)

e~9G.1 — oy (e—o;wl?e—alagwl e-d,\,_lo;,wl) 7

which is convex in B; in each of the M polyhedral regions, for all : = 1,..., M — 1. Hence,
based on the approximation in (7.36), P[Y'! > w] is convex in §; in each of those regions
for large values of w;. Thus, we select a convex function f)(w;,) to retain convexity of
P[Y! > w,] for small values of w; as can be seen by the refined approximation in (7.37).
Let us next fix some arbitrary w = (wy,...,war), or (w;,B) = (wy; %f, , %“l’-) and
assume that 3 belongs into the polyhedral region corresponding to 6¢; , = 53;-16;. for some
j=1,...,M. Let (('w'f,ﬂ");fl(w’f,ﬁi)), k=1,...,K,i=1,...,n be the subset of the

data set with 8* in that region (including points on the boundary and the vertices of the

region derived from extrapolation). We distinguish two cases:

1. Assume that B is in the convex hull of B1,...,8". Solve the following linear program-
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ming (LP) problem for each £ =1,...,K:

ming, Cufi(wf.BY) +--- + Cafi(wh, B%)
st. QB+ +GB" =B
Gt tGn=1

(7.38)

G20, i1=1,...,n

Note that this LP is always feasible since 8 is in the convex hull of B!,...,8". Let

(¢k.....¢¥) be an optimal solution. Then we can set fi(wk, B) as follows
fAwt.B) =D ¢Eh(wl.BY).
i=1

2. Assume 8 is not in the convex hull of 8',....8". Note that in this case the LP in
(7.38) is infeasible, and B is in the unbounded region, e.g., the points to the right
of point F in Figure 7.5, which means some components of B is fairly large, the
decoupling effects take place as we discussed in Section 6.2. Therefore we can use a
constant to approximate fi(-). As suggested in the example of Figure 7.5 we will find
the projection of 3 onto the convex hull of B!,...,8", say B+, and f;(w%,Bt) by
solving (7.38). We set fi(wf,B) = fi(wf,B"), e.g., filwi, 1) = fi(w1.BF), for all

B1 > Br in Figure 7.5.

After we obtain f(w}].B)..... fi(w¥.B), we can construct a piecewise linear function
of w; based on these K sample points (using extrapolation for w; < w} or w; > wf), then
find the value of f|(w;,B).

In summary, the procedure described above selects a number of sample points in (R*, B)
and obtains a function f,(w,,3) which is piecewise linear convex in 3 in each of its regions
and piecewise linear in w;. f)(w;,3) will be used in Equation (7.37) to yield an analytical
approximation of the stockout probability.

It should be noted that the heuristic procedure we discussed which approximates f(w;, 3)
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is one potential approach. Alternatively, given a data set consisting of K x N sample points
in (RY, B) we can approximate f|(w;,3) by some parametric form (e.g., some polynomial
function or even a neural network) and then use a least squares procedure to “fit” the

parametric form on the data set.

7.4 Approximating the expected inventory cost

The main motivation for analyzing the echelon inventory policy was to acquire the flexibility
to reduce expected inventory costs by trading-off inventory between various stages, while,

at the same time, maintaining service level constraints. To that end, we need to assess

expected inventory costs.

We will assume linear inventory costs. Let h; be the holding cost for echelon-7 inventory
foralli = 1,..., M. Noting that the expected echelon-i inventory is given by E[I'] +--- +

E[I?] + E[(I})7"], where (I')* = max(I',0), the total expected inventory cost is given by
RE[(I')*] + ha(E[(I")¥] + E[I?]) + - - + har(E[(IY) ] + E[I?] + - - - + E[IM]).  (7.39)
We have

E[(I)"] = E[(wi-Y")*]
= E[max(w; — YI,O)]

= w; — E[Y!] +E[max(0,Y"' — w;)]. (7.40)
Using the tail distribution of Y'! given in Equation (7.37), we obtain

E[max(0,Y! —w;)] = /00 P[max(0,Y! —w;) > y] dy
0

(o ]
/ PlY! —w, >y]dy
0

(o o]
~ fi(wi,B)e %1 / 0519 gy
0
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=05, w1

= fi(w,B)— - (7.41)
G,1
For all 7 > 2, we have

I'=(w; = Y*) — (wim = YY),

which implies
E[l'] = (w; — E[Y?]) — (wi-1 — E[Y*7']). (7.42)

Thus, combining (7.39), (7.40), (7.41), and (7.42), the total expected inventory cost can be
approximated by the following expression

M _

> hi(w; — E[Y?]) + (b1 + -+ + ha)E[(Y! —w))*] =

i=1

M =g, w1
3" hi(wi = B[YY) + (ki +--- + har) fi(wr, B) .  (743)
i=1

0G.1
To obtain an analytical approximation for the inventory cost we are now left with computing

E[Y?]. This is hard to do analytically; instead we will use an approach similar to the one

used in obtaining f(w;,8). We will first establish some structural properties for E[Y?].

Proposition 7.4.1 Consider the multi-echelon system (cf. (7.4), (7.5)) and let 0 < w; <
wa < --- < wyy be the corresponding hedging points. Define A; £ w;y) — w;, for i =

1,...,M — 1. Then E[Y™] is a constant function of (A1,--- ,Ar—1). Furthermore, for all

i=1,...,M—1, E[Y? is a function of (A;,--- ,Arr—1), which is conver and monotonically
nonincreasing in every coordinate. In addition, as A;,--- ,Ap_ — oo, E[Y?] converges to
a constant.

Proof: Recall from (7.4) and (7.5) that the shortfalls satisfy the following evolution equa-

tions:

o = max{Yi+DL-Bi 0, Vit + Dl -A;}, i=1,---,M -1, (7.44)
Y M, = max{V;¥ + D! - BM, 0}. (7.45)
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Due to the stability condition (6.1), a steady-state distribution exists for Y;. In particular,
Y} converges as n — oo to Y?. From the evolution equations (7.44) and (7.45) it is clear
that E[Y™] is a constant function of (Ay,--- ,Apr—1)-

Consider next the echelon inventory at stage M — 1 in three distinct systems A and
B, and C. System A operates with hedging points satisfying Axr—; = A,4. System B
operates with hedging points satisfying Aar—; = Apg. System C operates with hedging
points satisfying Ac = aA,4 + (1 — a)Ag, where 0 < a < 1. Assume without loss of
generality that A,y < Apg. Let Yt_‘l”",l—l, é‘;’n‘l, and YC‘?’;_[ be the echelon shortfall at stage
M — 1 for systems A, B, and C, respectively, during time slot n. We define the demand
and production processes for all systems A, B, and C on the same probability space so that

they are driven by identical sample paths. As a result, the echelon-M shortfall in all three

systems is identical for all time slots n; we will denote it by YnM . We have

YL o= mu{xt;-l + DL - BM-1 0, Y™ + D} — A4},
Ygfn;ll = max{Yg"n_l + DL - BM-1 o, YM + D! — A},

and
YA =max{Y2 '+ D) - Byt 0. V.M + D) — Acth
At time 0, let Y,{"’{)—l = Yé"o‘l = Yc‘}{)—l = 0, which satisfy

a7+ (1 - )Yt > YA

Suppose at time slot n,

- M- -
aY,tIn Ly - a)Yg . L> Yé‘:{l 1

At time n + 1,

M—1 M—1
aYy o+ (1 -a)Yg o

=amax{Y}/~' + D} - B¥-' 0, ;M + D} - A}+
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(1 - &) max{Y}/~' + Dy - BY~'. 0, ¥, + D; ~ Ap}

>max{a(Y{I7 + DL - BM ™) + (1 —a)(Y3 ' + Dy - BY 1), 0,

oY + Dy = Ay) + (1 - a) (Y, + Dy — Ap)}
=max{(aY}7' + (1 —a)Y3'") + DL - BM=' 0, Y, + D, — (@B4 + (1 — a)Ap)}
>max{YZ37 '+ D} - BY~1,0,Y, + D} - Ac}

M-—1
Cn+l-

Therefore, for all time slots n,
SV V) Zoilib D 7

which implies

aE[YY 7'+ (1 - )E[Y3 " > BlYS .

Thus, E[Y* 1] is a convex function of Ay;_;. Furthermore, from (7.44) it can be easily
seen that E[Y*~!] is nonincreasing in Aj;_; and as Ap—; — oo converges to a constant.
In particular, it converges to the expected shortfall of a single-stage system with demand
D! and capacity BM~! (decoupled system).

Similarly, it can be shown that E[Y?], which is a function of (A;,---,Ar—1), is convex
and nonincreasing in A; and that it converges to a constant as A; — oc. Following a
similar procedure, it can also be shown that for all sample paths and all time slots n,
Y, , is a convex and nondecreasing function of Y;i*+!, which by its turn is convex and
nonincreasing in A;,;, and convex and nondecreasing in Y,fi’f Therefore, E[Y?] is convex
and nonincreasing in A;;,. Continuing in this fashion, we conclude that E[Y*] is a function
of (A;,---,Aa—1) which is convex and nonincreasing in every coordinate. Furthermore,
as Aj,--- ,Ap—p = o0, E[Yi] converges to a constant. In particular, it converges to the
expected shortfall of a single-stage system with demand D' and capacity B* (decoupled

system). |
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Motivated by these properties of E[Y?] we will approximate it using a piecewise linear
convex function g;(A;,--- ,Aar—1), using a similar approach to the one used in approximat-

ing f1(B) in Section 7.3. More specifically we will be using the following approximation
E(Y'] = gi(wist — wi, ..., wy —war—1), i=1.....M -1 (7.46)

As in Section 7.3 we can select a number of sample points w/, j = 1,.... N, and construct a
piecewise linear convex function that matches E[Y?] at those sample points. Note that one
can evaluate E[Y?] from the same simulation used to evaluate P[Y? > w;], thus, the same
set of sample points and simulation runs can be used to construct both g;(-) and f,(-).
We now have all the ingredients to pose the problem of optimizing expected inventory
costs subject to maintaining service level constraints. Using the approximating expression

for the expected inventory cost in (7.43) we have the following optimization problem.

M
min Z;hi(wi = gi(Wiy1 — Wi,y ..., wpr — Wpr—1)) (7.47)
n -8z wy
e C.1
+ (Zhi)fl("”l;'“’?/'wle----.wA!/'wl)T—
=1 G,l
s.t P[Y' > w] = fi(wiiwis/wir. ... warfw;) e 76" < g, i=1,..., M

wy 2 - 2wz 2wy 2 0.

This problem can be solved analytically using standard nonlinear programming techniques.
Since there are a number of approximations involved in this formulation, it is of interest
to assess the accuracy of the solution when compared with “brute force” simulation. We
will see in Section 7.6 that the solution predicted by the problem in (7.47) is accurate. The
very significant advantage of our approach is that we can set the proper hedging points

analytically, which leads to huge computational savings.
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7.5 Extensions: The Multiclass Case and Lost Sales

In this section we discuss two simple extensions: i to a supply chain model that can ac-
commodate multiple classes, and (ii) to a model where unsatisfied demand at stage 1 is lost

instead of backlogged.

7.5.1 The Multiclass Case

In this multiclass case, a production policy cousists of scheduling decisions as well. That is,
at each point in time, and at each facility in the chain, we have not only to decide whether
the facility will be working or not, but also decide which products it will producing, if
any. Finding an optimal production policy to minimize expected inventory costs subject
to service level constraints is intractable, even in a single stage system. Bertsimas and
Paschalidis [BP01] have proposed production policies in the multiclass, single stage, problem
by using fluid model analysis to obtain a scheduling policy and large deviations analysis
for the idling policy. In this section we will use a scheduling policy that is motivated by
fairness considerations and ease of analysis.

We extend the model depicted in Figure 6.1 as follows. We assume that instead of a
single product class the system produces K products. We will maintain separate finished
goods inventory buffers for each product class in front of stage 1. We let IF! denote the
class k inventory at stage 1 for k = 1,..., K. Similarly, we will maintain separate inventory
buffers in front of each upstream stage 2,..., M. We will be denoting by I,'f'j the class k
inventory at stage j, for Kk = 1,...,K and j = 2,..., M. Finally, we let D¥! denote the
amount of external orders arriving at stage 1 from class k& during time slot n.

We will implement a scheduling policy which allocates a constant fraction of the capacity
of each facility to every class. In particular, we will let ¢ ; denote the fraction of the stage-
capacity B} allocated to class k during time slot n, forallk=1,...,Kandz=1,..., M,
where Z,’::l ¢k, = 1. Note that ¢, ; is constant for all time slots. This policy will be referred

to as the generalized processor sharing policy (GPS) and has in fact been analyzed in the
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large deviations regime by Bertsimas, Paschalidis and Tsitsiklis [BPT99] for the two-class
case; an approximate analysis for more than two classes can be found in Paschalidis [Pas99].
The same policy has been used by Glasserman [Gla96] in a multiclass make-to-stock system.
The GPS policy is attractive because it guarantees a minimum fraction of the capacity to
every class. Thus, it can be viewed as fair since the performance of a class cannot be
compromised at times that other classes are congested, as might happen for example with
a priority policy.

Notice, next. that according to the GPS policy the capacity allocated to a class &
can be distributed to the remaining classes during times that class & has no work to be
done. This allocation of the unutilized capacity can be done according to the weights
&k,i- As a result, classes are “coupled”, which leads to a rather involved large deviations
analysis (see [BPT99]). To facilitate the analysis in our supply chain model we will make a
simplifying assumption. More specifically, we will decompose the system across classes and
ignore the unutilized capacity allocated to a class during times that other classes are not
busy. A similar decomposition assumption has been made in [Gla96]. Hence, the multiclass
supply chain is decomposed in K single class chains and the results we have developed are
immediately applicable. In particular, our single class asymptotics and hedging points can
be derived for each class k by using capacity ¢;xB. at each stage i during time slot n.
The limiting log-moment generating function and the corresponding large deviations rate
function of the process {¢;xB.; n € Z} can be easily derived from Ag: () and Ag.(a).

respectively. Of course, for stability purposes we have to assume

forallk=1,...,K.
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7.5.2 A Model with Lost Sales

We next turn our attention to a model where if inventory is not available, external demand
is lost and not backlogged. We will start the discussion with the multi-echelon inventory
model.

Consider the supply chain model of Figure 7.1 operating under the echelon inventory
policy of Section 7.2. Assume that unsatisfied demand is lost. Our notation for the lost
sales system will parallel the one we used in Section 7.2. Let X} and Y} denote the echelon
inventory and shortfall, respectively, at time slot n for stage ¢ = 1,..., M. Let also w =
(wy,...,wpr) denote the hedging point vector. We can obtain an evolution equation for
Xi (respectively, Y:) by introducing a reflecting boundary at zero (respectively, w;) in

Equations (7.2) and (7.3) (respectively. (7.4) and (7.5)). In particular, for 17',; we have

Y., = min{max{Y} + D} — B.,0,Y:*' + D} — (wit1 — wi)}, w;}, (7.48)
i=1,.... M -1,
;M = min{max{¥;} + D} — BA .0}, war}. (7.49)

In the lost sales system the steady-state stockout probability is P[X* = 0] or, equivalently,
P[Y! = w;]. As in Sections 7.2~7.4, our objective is to minimize the expected inventory
cost subject to maintaining these probabilities below given thresholds ¢; for each stage .
Note that the steady-state stockout probability at stage 1 can be interpreted as the long-
term average fraction of time that the system has no stock (under ergodicity assumptions).
This can be connected with the percentage of orders that are lost. Consider the case of a
Bernoulli demand process (i.e., D is one with probability p and zero otherwise at each time
slot n and independently of anything else in the system). Then the steady state probability
that an order is lost is pP[Y* = w;], which is the same as the expected amount of lost sales
(in product time). The same reasoning does not apply for arbitrary demand processes,
since they may not see “time average”; the probability that an order is lost will depend on

the distribution of the demand process. To avoid such complications and have a measure
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that depends on the system we opted for steady-state stockout probability to construct
service-level constraints.

The main result is that the large deviations exponent of the stockout probability in
the lost sales model is the same as the one in the model with backorders considered in
Section 7.2. More specifically, we will require the demand and production processes satisfy
the following version of a sample path large deviations principle (SLDP) (see [BPT99] for an

extended discussion on SPLDPs). Let {Xj;;j € Z} denote any of the demand or production

processes, and let S_;\"k = '::j X, denote the partial sums of the process X. We will be
assuming that for all n > K and all kg,....kp, with 1l = kg <k < --- <k, =1,
e-(nez-i-z:":;l(kﬁ-l—ki)x\:\'(ai)) < P[IS"C\:ﬂ'-l,kﬁ-[ — (ki1 — ki)a;| < en,i=0,...,m — 1]_ (7.50)

Intuitively, this assumption deals with the probability of sample paths that are constrained
to be within a tube around a “polygonal” path made up with linear segments of slopes
ag,--.,am—1- This assumption is satisfied by a large class of processes, including renewal,
Markov-modulated, and stationary processes with mild mixing conditions (see [Cha95]). It
can also be seen from the derivation of the large deviations rate function in [Cha95] that the
time-reversed process X has the same large deviations rate function as the forward process.

We first provide an alternative expression for 8¢ ; in (7.7).

Lemma 7.5.1 [t holds

a>0 @ ro—T1=a

6z, = min [inf L inf (ADi(zo) + Api(z1))

1
. el . f = . e A‘ 2\IL2)).....
;gg a Io‘flIllBEQI'_r:aﬂl (ADI(IO) + glABl (‘Tl) + 52 B2 (‘l"-))) : :
(€1.,£2)€02
1
. - . At * .o = R .
;gg a Io—fxxl—..._lrflzaxu=aﬂu_l ( bt (z0) + il (1) + * fMABM (:BM)) ] (7:51)

(€11 EM)EO s

Proof: Comparing (7.7) and (7.51) it suffices to show
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. 1 - s+ 7, -— e LA*T . —
t}gg ; Io—fx:tx—-.l-i—lt;ut.zaﬁ.'_l (ADl ('BO) + GIAB‘ (.’17[) + + 6‘AB‘ (I,)) -
(sl y“-tft)eOl
1
. el - A: = p -4 _A‘ . i
é[)lf(; a Io—fxrl—..l-liffx:r.'zaﬁ‘—l ( Dl(xO) +£lABl(‘zl) + Cilpg (= ))

(El ----- 61)601

for some arbitrary ¢ = 1,..., M. We will denote by LHS (respectively, RHS) the expression
on the left hand side (respectively, right hand side) of the above.

First observe that LHS < RHS, since for any X and any a we have A (a) < Ak (a)
and A (a) < A% (a) (cf. (1.10) and (1.11)).

Next consider an optimal solution y = (a*,zj,...,z{,£],...,& ) of the optimization
problem in the LHS. Without loss of generality, assume that &7,....&; > 0; otherwise
some terms will be eliminated from the objective function and the rest of the proof carries
through. Fix € > 0, sufficiently small. We will construct a feasible solution y’(€) of the LHS

that is also optimal. We will distinguish several cases:
1. Suppose z§ > E[D!] and z; < E[BI| for all j =1,....i. Thenset y’' =y.

2. Suppose z; < E[D!]. Note that by feasibility z§ — &;z] — --- — &'z} > 0. This
implies that for some j = 1..... i,z < E[B’]. Otherwise, i.e., if £} > E[B] for all

j=1,....i, we have

7y - §iwi—- =&z <E[D|-§E(B'] -~ ~&EB] <E[D)] - min E[B] <0,

Wi}

by the stability condition (6.1). Then set
4 * * * = * € L = - =
y =(a",zg +ez11,...,7;_1,7; + E—?-,zj“,...,:z:i,fl,...,f,-),
1

which is feasible. Note that since A;;(-) is equal to zero below the mean E[D!] and
A%, () is nonincreasing below the mean E[B’] the objective value of the optimization
problem in the LHS at y’ is no more than the corresponding value at y. Hence, y’' is

also optimal.
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3. Suppose that for some j, j = 1,...,3, T} > E[B’]. We distinguish two cases:

(a) Suppose z§ > E[{D!]. Then set

R d £

/
Y =(a"zp - &6z, - T 10T — 6 Tjpps o T &6 )s

which is feasible. Note that since AZ.;‘I (-) is nondecreasing above the mean E[D!]
and Ag;*—(-) is equal to zero above the mean E[B7] the objective value of the
optimization problem in the LHS at y’ is no more than the corresponding value

at y. Hence, y’ is also optimal.

(b) Finally, suppose that z§ = E[D!]. Then the same argument as in Case 2 above

- . . . !
establishes that for some j' = 1.....7 not equal to j we have z7, < E[B’]. Then
set

' —_ = = =  d € = = = € = o - =
y = (a ,zo,...,zj_l,zj - E,Ij_{,l,...,le_l,le + 6—',:1:17_,_1,....L‘i,fl,...,fi),
J 7’

which is feasible. Note that since A7, (-) is nonincreasing below the mean E[B]
and Ag;*—(-) is equal to zero above the mean E[B’] the objective value of the
optimization problem in the LHS at y’ is no more than the corresponding value

at y. Hence, y’ is also optimal.

Given y we keep repeating the procedure in Case 2 and 3 above until we construct a new
optimal solution y’ = (a’.z,...,z}, £}, ...,£}) that satisfies zf, > E[D'] and z; < E[B?] for
all j = 1...,i. Such a y’ is feasible for the optimization problem in the RHS and achieves
the same objective function value for both RHS and LHS. The optimal value of the RHS
can be no worse. Thus, RHS < LHS. |

Under somewhat more restrictive assumptions on the demand and production processes
(some form of a sample path large deviations principle as we stated before) we obtain the

following theorem.
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Theorem 7.5.2 Assume the hedging points wy,ws,...,wn, in the multi-echelon lost sales

system satisfy

Wit = Piwy, i=1,....M -1,

where 3; are constants and 1 < 8 < --- < Bar-1- The steady-state shortfall Y! of echelon

1 satisfies
lim — log PY!'=w]=-6;,, (7.52)

w; —0o0 UNn
where 6g, | is given by (7.7).

Proof: Recall that for each time slot n the lost sales system satisfies the evolution equations
(7.48) and (7.49), while the system with backorders satisfies Euqations (7.4) and (7.5). We
define demand and production processes on the same probability space for both systems so
that they are driven by identical sample paths. We observe that for all = it holds ¥;! < Y;L.

Hence, by using Proposition 7.2.3 and 7.2.4 we obtain

hmsup—— logP[Y! = w;] < hmsup— log P[Y' > w] < -6 ;.

wy —00 wi—o0 W)
For the lower bound we will mimic the proof of Proposition 7.2.2. The key of that proof
is that we identified M scenarios (Case 1,..., . M) which led to Y! > w,. The probabilities

of these scenarios provide a set of M lower bounds; we select the tighter by maximizing over
those. Here we will establish that the scenarios provided there are also feasible scenarios
in the lost sales model and lead to Y! = w,. Using the same notation as in the proof of
Proposition 7.2.2, let m be large enough, choose a > 0, set w; = ma and consider the

followinf M scenarios:

Scenario 1.
b : g -
{IS7; —Jzol <em,j=1...,m}, {|S{; —jzi|<em.j=1....m},
where zo,z) > 0, €9,€; >0, 9 —z; = a+¢€, and ¢ = ¢g + €.
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Scenarios 1t =2,..., M.

_— '
{ISC; —jzol < €om,j=1...,m},

21 . . ot . .
{ISE] _Jxll S €Emy,J] = 1""ml}"”7{Iski_1+l,kl'_1+j —thl S €GMmy,] = 1"'7mi}7

where zg,...,z; > 0, €9,...,€; > 0, z0 — 12y — -+ - — &7 = (a + €)Biy, & = mj/m

i—1

f0tj=1""’i7 (617"-761') eoiv a'nd61=€0+"'+€i7 a'ndk‘i—l =(Z—1)+ j=lmj'

Using the same arguments in the proof of Proposition 7.2.2, according to scenario i the
shortfall in the system with backorders builds up linearly with m at a rate of a + €, where
€ — 0 ase....,e; = 0. It reaches m(a + €') in m time slots. Now from (7.48) and (7.49)
note that starting from zero Y;! and Y;! follow identical sample paths until they hit w;.
Hence, Y;! reaches w) = ma in m time slots. Thus, using the same notation as in the proof

of Proposition 7.2.2, forevery 1 = 1, ..., M we have

P[Y! = ma]
>P[min{Gmn, ma} = ma]
ZP[ISII,?; —'_].'L'Q' < Gom’j = 1,...,'"1.] x I’[I'S'],Bi]l —jxl[ S elmlaj = 1,...,17’1.1] xX...

X P[Islgf_l-(..[,ki_l.;.j - jzil <emy,j=1,... smi]

Ze—m(A;Jl (.‘to)-i-fu\'Bl (Il)+---+E.’A'Bi (.’rg)+()

where m is large enough, ¢ — 0 as €g,...,€; — 0, and the last inequality above is due to
the SPLDP assumption in (7.50). As in the proof of Proposition 7.2.2 we optimize over all

parameters of scenarios ¢ to obtain

1 -
liminf — logP[{Y! = w;] >
w]—oo W)
M 1 : = = . = .
B ;gg ; Io—flxl_'}gt;ixi=aﬂx—l (ADI (:BO) + EIABl (-'1:1) ot &ABl (1'1)) )
(51 r"vfi)eoi
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By using Lemma 7.5.1 and selecting the tightest bound among all scenarios 1....,M

we obtain

lim inf—l-logP[}.’l =wy] > —05,-

wy—roo wl

Following an analysis that parallel the one in Section 7.4 we can also obtain the total

expected inventory cost in the lost system. It is given by

M

> hi(w; ~ E[YY]).

i=1
Thus, to obtain the hedging point vector we can construct an optimization problem similar
to the one in (7.47).

A lost sales extensions to the local inventory case, handled by our decomposition ap-
proach in Chapter 5 and Chapter 6, appears to be more involved. The single-stage result
of Proposition 5.2.1 can be readily extended to the lost sales model by taking the limit
B = (B1,...,Brs-1) = oo in Theorem 7.5.2 (cf. Remark 3 in Section 7.2.3). By doing this,
we obtain that the decay rate of the stockout probability in a single-stage lost sales model is
the largest root of Ap(6) + Ag(—8) = 0, where D and B denote the demand and production
process, respectively. Using our decomposition technique, though, to handle the multi-stage
case requires characterizing the departure process of a G/G/1 queue (Theorem 6.2.1). In
the lost sales model, one needs to extend that result and characterizes the departure pro-
cess of a G/G/1 queue with a finite buffer. We conjecture that this is doable along the
lines of the result in [BPT98b]. A simple approximation can be easily developed by using
the departure process in an infinite buffer G/G/1 queue to obtain a bound on the large
deviations rate function of the departure process from a queue with a finite buffer. Using
such an approximation one can apply our results in Chapter 6 to treat the local inventory

case with lost sales.
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7.6 Numerical Results

In this section, we present numerical results to evaluate the performance of the proposed
large deviations approximations. We will consider a two-stage system and we will (a) use
the decomposition approach developed in Section 6.2 to derive a base-stock policy for each
stage under a variety of service level requirements, and (b) use the echelon base-stock policy
analyzed in Section 7.1 to optimize the expected inventory cost subject to service level
constraints. We will also present an example demonstrating that detailed distributional
information on the demand and production processes is critical in making inventory control
decisions.

Throughout this section we consider Markov-modulated demand and production pro-
cesses. Figure 7.6 depicts the model of the demand and production processes in a two-stage
supply-chain. We will be referring to this system as Ezample I. Notice that according to
the mean production capacities the bottleneck is the first stage. We construct Ezample 2 by
exchanging the order of the two production facilities. The 3-stage example we will consider

will be referred to as Ezample 3.

D B! B?
0.8
0.2 oL 0.9
r = (2,8,0.5) r = (0,4) r = (0,4.5)
E[D!] = 2.69 E[B'] = 3.11 E[B%] = 4.0
Var(D') = 8.87 Var(B') = 2.77 Var(B?) = 2.0

Figure 7.6: The models of demand and production processes in Example 1, a
two-stage system. We denote by r the vector of demand or production amounts
at each state of the corresponding Markov chain.

7.6.1 A Two-Stage Supply Chain with the Decomposition Approach

For both examples we use the approach developed in Section 6.2. Using the result of

Theorem 6.2.2 we compute the asymptotic decay rate of the stockout probability at each
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stage, namely,

6; , = 0.093,

for Example 1 and

for Example 2. To compute analytically the hedging points we use the expression in (6.20).
To compute the prefactor ¢; (cf.(6.19)) we simulated the system to obtain the expected
shortfalls, which are independent from the hedging points (since we decomposed the system).
In Table 7.1 we compare the analytical results with simulation results for Example 1. Results
for Example 2 are in Table 7.2. In both tables, the first column list the desired service
level requirements for stages 1 (final product), and the second column list the assumed
service level requirements for stage 2. The third and fourth column list the analytically
computed hedging points, for stages 1 and 2, respectively. We simulated the system with
these hedging points. In both tables, we report in the 5th and 6th column the simulated

value of the expected inventory at stages 1 and 2, respectively. Finally, in the last two

67 , = 0.258,

0; , = 0.334,

9; , = 0.093,

columns we report the actual simulated stockout probability at each stage.

Analytical Results Simulation Results

€ € wy wy || E[IN)T] | E[IZ] ] P[IT <0] P[> =0] |
0.20 [ 102 15.73 | 10.79 8.23 9.86 0.227 1.349 x 102 |
0.15 | 10-= | 18.82 | 10.79 10.70 9.86 0.175 1.349 x 102
0.10 | 1072 | 23.17 | 10.79 14.42 9.86 0.120 1.349 x 1072
0.05 | 10-° | 30.61 | 10.79 21.20 9.86 0.0633 1.349 x 1072
10~2 | 1072 | 47.87 | 10.79 37.89 9.86 | 1.444 x 1072 | 1.349 x 10~2
1072 | 10~ | 47.87 | 17.70 38.61 16.63 | 1.060 x 10~ | 1.084 x 10~3
1073 [ 1073 | 72.58 | 17.70 63.22 16.63 | 1.048 x 10~ | 1.084 x 10~3
1073 [ 10~% | 72.58 | 24.60 63.28 | 23.51 [ 0.996 x 10~ | 0.959 x 10~%
1071 | 10~% | 97.29 | 24.60 87.98 | 23.51]1.044 x 10~% | 0.974 x 10~*
10-* | 10~° | 97.29 | 31.50 87.99 | 30.40 | 1.038 x 10~% | 0.936 x 10~3
1075 [ 10~ | 121.99 [ 31.50 || 112.69 | 30.40 [ 1.135 x 10~° | 0.936 x 10—°
10~° | 107° | 121.99 | 38.40 || 112.69 | 37.30 | 1.131 x 1075 | 1.046 x 10~°

Table 7.1: Numerical results from the decomposition approach for Example 1.
The simulated values for the expected shortfalls, that are used in computing the
prefactors ¢;, are E[L!] = 9.297 and E[L?] = 1.098. Expected inventory costs
are reported in Table 7.4.
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Analytical Results Simulation Results
€1 € w) wo E[(/D)F]] E[IF] [ P[I' <0 P[I? = 0]
0.20 [ 1072 [ 4.41 | 46.55 2.78 38.48 0.196 0.939 x 10~2
0.15 | 1072 | 5.53 | 46.55 3.69 38.48 0.156 0.939 x 10~*
0.10 | 1072 | 7.09 | 46.55 5.03 38.48 0.111 0.939 x 10~%
0.05 | 1072 | 9.78 | 46.55 7.49 38.48 0.0612 0.939 x 10~*
1072 | 107 | 16.01 | 46.55 13.52 38.48 | 1.396 x 10~2 | 0.939 x 10~>
102 | 10~% [ 16.01 | 71.25 13.61 63.06 | 1.022 x 102 | 0.983 x 10~
1073 | 1073 | 24.92 | 71.25 22.48 63.06 | 1.346 x 1073 | 0.983 x 10~
1073 | 10~ | 24.92 | 95.96 22.50 87.75 | 1.137 x 1073 | 1.256 x 10~*
10~ | 107 | 33.83 | 95.96 31.41 87.74 | 1.158 x 10~% [ 0.966 x 10~
10~* | 10> | 33.83 | 120.67 31.41 | 112.45 | 1.084 x 10~7 [ 0.903 x 10~°
10™> | 10~ | 42.74 | 120.67 40.32 | 112.45 | 1.083 x 107> | 0.903 x 10>
10~ | 107% [ 42.74 | 145.37 40.32 | 137.16 | 1.068 x 10~> [ 0.864 x 10—°

Table 7.2: Numerical results from the decomposition approach for Example 2.
The simulated values for the expected shortfalls, that are used in computing the
prefactors ¢;, are E[L'] = 2.420 and E[L?] = 8.216. Expected inventory costs
are reported in Table 7.6.
In most cases, we select the service level requirement of the second stage to be same as,
or one order of magnitude less, than €;. For those large stockout probabilities (¢; > 0.01),
we set €2 = 0.01. The numerical results suggest that this suffices to make the decomposition
approach valid. In particular, we observe that the proposed large deviations asymptotics are
fairly accurate, they capture the exponent of the stockout probability and get fairly close in
the first significant digit. Of course, there are many combinations of w; and ws that would
lead to the same service level. Our decomposition approach yields one possible combination.
In particular, the decomposition approach minimizes the required safety stock for stage 1,
wy, since it assumes that no upstream material requirement constraints are in effect. In the

next section we explore how we can select the best such combination to minimize expected

inventory costs.

7.6.2 A Two-Stage System with Multi-Echelon Approach

Next we apply the multi-echelon approach to both Examples 1 and 2 considered above.

We start with Example 1. Using the results of Theorem 7.2.1, Corollary 7.2.6 and the

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



characterization of 6z, , in Equation (7.21) we obtain
07 = 65 = 0.0932,

and
= . = w2 = 5
0¢,) = min (01, -——02) = 0.0932,
wy

for all wy > w;. For echelon 2, we obtain 6 , = 0.2584.

We select w; = 10, 30, 50, and for each w,, select wo such that §; = % =1, 1.5, 2, 2.5,
3.5. We simulated the system with those sample points (w;,ws) and to construct the
prefactor fy(w;,B;) for the stockout probability and the approximation gi(Q;) for the
expected shortfall. By simulation we also obtain E[Y?] = 2.42, and ¢, = 6, ,E[Y?] = 0.63,
which will be used as a prefactor in the echelon-2 stockout probability (as in (6.20)).

We solved the nonlinear programming problem in (7.47) for a variety of service level
requirements €; (we impose no service level requirement on stage 2, i.e., e = 1) and holding
costs h = (h;, hs) for stages 1,2, respectively. The results are reported in Table 7.3. There

are two main observations we can make:

e Our analytical approximation for the stockout probability and the expected inventory
cost is very accurate. To see that compare (i) the actual stockout probability (column
5 in the table) achieved by the optimal solution w? of the optimization problem in
(7.47) with the corresponding service level requirement €, and (ii) the actual inventory
cost of w? (column 6) with its analytical approximation (column 4). Our results are
accurate even for relatively large stockout probabilities, that is, away from the large

deviations limiting regime.

e The performance of our analytically obtained policy w? is rather close to the optimal
policy (obtained by simulation). In fact, our policy is within at most 2% of the optimal

(difference of column 6 and 9), which drops to at most 1% if we ignore the first row
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Analytical Results Simulated Values Simulation Results

€} h w | E[C] | P[X' <0] | E[C] w3 P[X' <0] | E[C]
0.20 (1,1) (16.57,20.71) 28.6 0.208 29.2 (17,21) 0.199 29.8
0.15 (1.1) (23.41,23.41) 34.3 0.157 34.4 (20,24) 0.150 34.7
0.10 (1,1) (27.76,27.76) 41.9 0.103 42.0 (26,28) 0.099 42.3
0.05 (1,1) (33.25,35.25) 55.8 0.052 55.9 (32,36) 0.049 56.4
10> | (1,10) (52.51,52.51) 541.3 | 1.01-10"° | 541.3 (50,53) | 0.99-107° | 546.2
10~2 (1,1) (52.57,52.57) 89.6 | 1.01-10~* | 89.6 (50,53) | 0.99-10"= | 90.0
10~3 (5,1) (52.50,52.50) 246.7 | 1.01-107° | 246.6 (50,53) | 0.99-10> | 247.2
10—2 | (600,1) (47.72,95.44) | 23218 | 1.03-10"% | 23211 || (48,57) | 1.00-10"° | 23257
10~° (1,1) (77.21,77.21) 138.7 | 1.03-10° | 138.7 (74,78) [ 0.99-107° | 139.4
10— (1,1) (101.93,101.93) | 188.1 | 9.96- 10~ | 188.1 || (99,102) | 9.82-10~> | 187.8

Table 7.3: Numerical results for Example 1 operated under the multi-echelon
policy. We denote by w? (3rd column) the hedging vector obtained by solving
the optimization problem in (7.47). Similarly, wg (7th column) denotes the
hedging vector obtained by brute-force simulation over integer points. The 4th
column (E[C]) lists the optimal value of the optimization problem in (7.47), that
is, our analytical approximation of the total expected inventory cost of the policy
in column 3. Column 5 and 6 list the stockout probability and expected inventory
cost, respectively, obtained by simulating the policy of column 3. Column 8 and
9 list the stockout probability and expected inventory cost, respectively, obtained
by simulating policy of column 7.

of the table. !

To assess the efficiency of the analytical approach, note that to optimize the expected

inventory cost by simulation we need to simulate for all possible integer combinations of w;

and wy and select the one that yields the lowest cost. Moreover, simulating small stockout

probabilities requires very large sample sizes. It usually takes from several hours to several

days to find the optimal by brute-force simulation, depending on the length of sample paths

(as dictated by the service level requirements) and the number of (w;,w2) points. In fact,

these running times of brute-force simulation were achieved by using information from our

analytical results. Brute-force simulation with no information at all would take much longer

and would be computationally intractable for the smaller ¢;. The nonlinear programming

problem can typically be solved within one minute (for instances we considered), while “pre-

processing” (i.e., obtaining the prefactors) took on the order 30min. It is evident that the

'In some cases in Table 7.3, wj achieves less inventory cost than w2 because in these instances w3

slightly violates the service level requirements (due to the large deviations approximation).
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proposed analytical approach leads to huge computational savings at a modest performance
cost. It should also be noted that in the simulations we only considered integer valued
hedging points w; and ws. As a result, the discrepancies between analytical results and
simulation in Table 7.3 contain this quantization error and thus overestimate the actual
error of the analytical approach.

To compare the solution obtained by the multi-echelon approach with the one obtained
by the decomposition approach we report the latter value in Table 7.4 (9th column). Be-
cause we ignore coupling among stages the decomposition approach is not as accurate in
approximating P[/!' < 0]. Thus, in some cases it leads to solutions violate the service level
requirement (more in row 1-4 of Table 7.4 and slightly in some of the remaining). In terms
of inventory cost, the multi-echelon approach leads, in general, to more efficient solutions
(except in rows 1-4 and 8 of Table 7.4 in which we end up with less inventory cost because

we violate the service level requirement).

Analytical Results Simulation Results

€1 I €2 l wy I wo E[([l)+] | E[12] P[II < 0] h ho E[COSt]
0.2 |107%}15.73 [ 10.79 8.23 9.86 0.227 1 1 26.32
0.15 | 10~ | 18.82 | 10.79 10.70 9.86 0.175 1 1 31.26
0.1 [ 1072 |23.17 | 10.79 14.42 9.86 0.120 1 1 38.70
0.05 [ 10=% | 30.21 | 10.79 21.20 9.86 0.063 1 1 52.26
102 | 1073 | 47.87 | 17.70 38.61 16.63 | 1.060 x 10~ | 1 | 10| 591.01
10~ [ 1073 [ 47.87 | 17.70 38.61 16.63 [ 1.060 x 10~° | 1 1 93.85
1072 | 10~ | 47.87 | 17.70 38.61 | 16.63 | 1.060 x 102 | 5 1 | 248.29
10=%2 | 10~ | 47.87 | 17.70 38.61 16.63 | 1.060 x 10~° | 600 | 1 | 23221.24
103 | 1073 | 72.58 | 17.70 63.22 | 16.63 ]| 1.048x 1073 | 1 1 143.07
10~3 | 10~* | 72.58 | 24.60 63.28 | 23.51]0.996 x 1077 | 1 1 150.07
10~ [ 107% [ 97.29 | 24.60 87.98 [23.51[1.044x10~% | 1 1 199.47
101 [ 10~ | 97.29 | 31.50 87.99 [30.40 [1.038x10~%| 1 1 | 206.38

Table 7.4: The 3rd and 4th column report the hedging points obtained by the
decomposition approach. We simulated the system to obtain E[(I!)*], E[/3],
P[I! < 0], and E[Cost]. To make comparisons with the results in Table 7.3
note that holding costs h;, h, for echelon 1 and 2, respectively, correspond to
holding costs h, + k2 and h» for stage 1 and 2, respectively, in the decomposition
approach.
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Next we consider Example 2. We compute

1 =02584, 63 =0.0932,

and

6% . = min (67, 2263 ) = min (0.2584,0.0932 £2).
G,l 1 wl i 'ujl

For echelon 2. we obtain 6z, , = 0.0932.

As in Example 1, we simulated the system with sample points (w;.w2), where w; =
10, 30, 50, for each w), select wo such that 8, = %f =1, 2, 2.5, 2.7736, 3, 4, and construct
the prefactor fi(w;, ;) for the stockout probability and the approximation g;(A,) for the
expected shortfall. By simulation we also obtain E[Y?] = 9.28, and ¢, = 6% ,E[Y?] = 0.865,
which will be used as a prefactor in the stockout probability at stage 2.

Solving the optimization problem in (7.47) we obtain the results reported in Table 7.5.
The results are similar in nature to the ones we obtained for Example 1. That is, our
approximations are accurate for both stockout probabilities and expected inventory costs
and the analytical solution in within 2.2% of the optimal. Figure 7.7 depicts how the
expected inventory cost (obtained by simulation) changes with the hedging vector for the
cases €, = 1072, hy =1, ho =1 and ¢, = 1072, hy = 5, ha = 1 (rows 5 and 6 in Table 7.5).
It can be seen that the policy obtained by our analytical approach is very close to optimal;
deviating from w? can lead to significantly larger expected inventory cost, which stresses
the significance of optimization. Finally, as in Example 1, we compare the multi-echelon

policy with the decomposition policy in Table 7.6. As expected the multi-echelon policy

leads to more economic solutions.

7.6.3 A Three-Stage System with Multi-Echelon Approach

We next consider a three-stage system (Example 3), with the Markov-modulated demand

and production processes depicted in Figure 7.8.

We apply the multi-echelon approach to Example 3. Using the results of Section 7.1 (cf.
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Analytical Results Simulated Values Simulation Results

€ h W E[C] | P[X' <0] | E[C] ws | P[X' < 0] | E[C]
020 | (L1) || (8.82,22.04) | 20.9 0.198 20.1 || (10,21) 0.200 19.8
0.15 | (L.1) || (10.06,25.19) | 24.8 0.152 24.0 || (10,25) 0.150 23.8
0.10 | (1,1) || (11.62,29.91) | 30.7 0.102 29.9 || (13,29) 0.099 30.1
0.05 | (1,1) || (14.18,38.05) | 40.9 | 5.06-10~2 | 40.4 || (15,37) 0.05 10.0

10-2 | (1,1) || (21.74,54.61) | 64.7 | 1.03-102 | 64.4 || (22,54) | 1.00-10~2 | 64.0
102 [ (3,1) || (17.75,62.15) | 129.7 | 1.05-10~2 | 129.1 || (18,61) | 1.00-10-2 | 129.1
10-2 | (1,10) || (26.92,52.81) | 460.3 | 1.03-10~2 | 459.9 || (22,54) | 1.00-10~2 | 467.2
10-° | (1,1) || (29.26,81.17) | 98.7 | 1.07-10-3 | 98.7 || (30,81) | 9.95-10~7 | 99.2
10-7 | (1,1) || (3821, 106.00) | 132.5 | 1.22-10" | 132.5 || (40,107) | 1.00-10~* | 135.5

Table 7.5: Numerical results for Example 2 operated under the multi-echelon
policy. The notation and the structure of the table are the same as in Table 7.3.

Analytical Results Simulation Results

e | & | w wa E((I/Y)*] | E[f?] | P[I'<0] | hi | hs | E[Cost]
02 [ 1072 | 4.41 | 46.55 2.78 38.48 0.196 1|1 44.04
0.15 | 1072 | 5.53 | 46.55 3.69 38.48 0.156 1 | 1] 4586
0.1 [1072| 7.09 | 46.55 5.03 38.48 0.111 1 |1 48.54
0.05 | 10°2 | 9.78 | 46.55 7.49 38.48 0.061 1 |1 53.46
10-2 1073 ] 16.01 | 71.25 13.61 63.06 | 1.022x10"%| 1 | 1 90.28
107211073 [ 16.01 | 71.25 13.61 63.06 | 1.022 x 1072 | 5 | 1 | 144.72
10~% | 1073 | 16.01 | 71.25 13.61 63.06 | 1.022x10~% | 1 | 10 | 780.31
1073 {1073 ] 24.92 | 71.25 22.48 63.06 | 1.346 x10~3 | 1 | 1 | 108.02
1072 | 107 | 24.92 | 95.96 22.50 87.75 [ 1.137x10~2 | 1 | 1 | 132.75
10~* [ 10~ | 33.83 | 95.96 31.41 87.74 | 1.158 x10~* | 1 | 1 | 150.56
10~* [ 10~° | 33.83 | 120.67 31.41 112.45 | 1.084 x10~% | 1 | 1 | 175.27

Table 7.6: Comparing the multi-echelon policy with the decomposition policy
in Example 2.

(7.21), (7.22)), we obtain

07 = 0.1276.6; = 0.08663,6; = 0.08663,

and

. w2 w3 . wao
07, =min|( 07, —65,—03 | = min | 67, —65 ) .
G,l l,wl Q»wl 3 I’wl 2

wy? wy

Therefore, the feasible set of 8 = (51,082) = (Ez 'ﬁl) has two regions determined by
Br:1< B < % and 8 > tho%i. We select w; = 20, 40,60, 80, and for each w,, select a

set of (w2, w3) to include some sample points on the boundary and inside the two regions
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Figure 7.7: The optimal multi-echelon policies for Example 2 derived by sim-
ulation, where the service level requirement is ¢; = 10~2. (a) When h; =1 and
ha = 1, w] = 22, w3 = 54, E[Cost] = 64.04; (b) when h; = 5 and hs =1,
w; = 18, w; = 61, E[Cost] = 129.22. In each graph, the thick curve is the
boundary of the set of the feasible policies (i.e., set of vectors (w;,w-) satisfy-
ing the service level constraints), the optimal policy obtained by our analytical
approach is marked with a circle.

D Bl B2 BJ
09 0.2 0.8
0.
.@o
03
ro = (1.2.10.28) ri = (3.40.60) rys = (0.20.40) rys = (20.60)
E[D| = 15.27 E[B'] = 45.50 E{B?] = 29.03 E[B*] = 49.00

Figure 7.8: The models of demand and production processes in Example 3.

of 8. We simulate the system at those sample points and use the approach of Section 7.3
to obtain fi(w;,8) and ¢;(-), 1 = 1,2, 3, and, as a result, the stockout probability and the
expected inventory cost.

We solve the nonlinear programming problem in (7.47) for a variety of service level
requirements €; and holding costs h = (h;,h,h3). The results are reported in Table
7.7. Again, we observe that the analytical results are very close to the ones obtained by
simulation. That is, our approximations are accurate for both stockout probabilities and

expected inventory costs and the analytical solution is within at most 2.5% of the optimal.
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Analytical Results Simulated Values Simulation Results

€ h wh E[C] | P[X! < 0] | E[C] we P[X' <0} | E[C]
1071 (t.I.1) | (27.5.53.7,68.7) | 1298 [ L.14 x 10~ T [ 132.6 || (23.51.74) [ 0.98 x 10~ T | 136.0
Tx 1072 [ (LI,1) || (293,590, 74.0) | 1428 | 7.55 x 10~2 | 145.0 || (23, 56, 80) | 6.82 x 10~2 | 147.6
3x107°§ (L,I,1) || (35.2,68.1, 88.1) | 175.1 | 3.36 x 10~2 | 176.4 || (28, 64,92) | 2.97 x 10~* | 173.4
102 (1,1,1) || (42.5,83.7,103.7) | 215.6 [ 1.15 x 10~ | 215.8 || (34,88,104) | 1.01 x 10~* | 211.5
102 (1,3,1) || (43.9,78.5,108.5) | 360.2 | 1.20 x 10~2 | 362.7 || (34,85,106) | 1.01 x 10~ | 364.1
103 (L.1,1) | (59.7,116.2,130.0) | 289.9 | 1.08 x 10~3 | 290.1 || (57,116,130) | 1.01 x 10~ | 287.5
101 (LL,1) | (75.9,134.4,162.6) | 362.3 | 0.97 x 10~ | 363.5 || (69,135,166) | 1.00 x 10~ | 360.6

Table 7.7: Numerical results for Example 3 operated under the multi-echelon
policy. The notation and the structure of the table are the same as in Table 7.3.

7.6.4 Significance of Distributional Information

As our final example we present a two-stage supply chain model operated under the multi-
echelon inventory policy. We will demonstrate that distributional information on the de-
mand and service processes is critical in making inventory control decisions. In particular,
we will try to identify the bottleneck stage that determines the stockout probability at stage
1.

The demand and production processes are all discrete-time Markov modulated processes.
Letting P and r denote the transition probabilities and the vector of demand or production

amounts in each state of the corresponding Markov chain we set:

0.2 0.8
rp =(510), Pp= , E[D] = 8.33,
0.4 0.6
02 0.8 X
rgt = (0, 25) PBl = 3 E[B ] = 1818,
0.3 0.7
and
0.15 0.85 ,
rg: = (0,14), Ppge = E[B?] = 13.22.
0.05 0.95

Applying the results of Section 7.1 (cf. (7.21), (7.22)) we obtain

1 =0.1785, 65 = 0.1785.
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Figure 7.9 depicts 87 and 63 as roots of the corresponding nonlinear equation.

0.6

T T

A Ohag 0
_ AgMedg-0)

L :
[} 0.05 01 015 02 025

Figure 7.9: For the example of Section 7.6.4, we plot Ap(8) + Ag:i(—8),
Ap(8) + Ag2(—0) and identify the corresponding largest positive roots 7 and
85, respectively.

We compute

6z, = min(6;, Z—fo;) = g7 = 0.1785,

which according to the discussion in Remark 2 of Section 7.1 implies that the “bottleneck”
is stage 1 in the sense that the process B! and not B? characterizes the stockout probability
at stage 1. This seems to contradict naive intuition that the “bottleneck™ is stage 2 since
E[B'] > E[B?]! The conclusion that the “bottleneck™ is stage 1 is explained by noting that

B! is more bursty than B2.
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Chapter 8

Summary and Future Research

We considered pricing and resource allocation decisions in communication and supply net-
works with Quality of Service (QoS) considerations. In particular, we focused on revenue or
welfare maximization communication networks, and inventory control in supply chains sub-
ject to given QoS requirements. Complicated stochastic processes and QoS metrics make
it impossible to analyze those stochastic networks exactly. Various asymptotic results were

obtained in the work of this thesis.

8.1 Pricing in Multiservice Communication Networks

On pricing, we started with the problem of pricing single resource multi-service communica-
tion systems, and formulated the revenue and welfare maximization problem as a dynamic
programming problem. We explored the properties of the optimal dynamic policy, and
established some insightful, qualitative properties. We developed several approximation
approaches, including price aggregation and approximated dynamic programming, that can
handle large scale problems. We derived an upper bound for the optimal revenue, which
can be used to evaluate the performance of our suboptimal policies when it is practically
impossible to obtain the optimal policy. We also proposed another suboptimal policy, the
static pricing policy, and we provided an algorithm for calculating the blocking probabilities
for the static policy. Numerical results show that the expected revenue of those suboptimal
policies are very close to the optimal revenue.

Then, we considered a general, network model and studied the problem of pricing the
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use of the available resources under both revenue and welfare maximization objectives.
We established that static pricing is asymptotically optimal in a regime of many small
users. To that end, we established that in this limit the blocking probabilities under an
appropriate static pricing policy converge to zero exponentially fast. We characterized this
exponential rate of convergence, which allowed us to obtain simple estimates on the size
of the network in which static pricing is within a given distance from the optimal. We
characterized the structure of asymptotically optimal static prices and used this structure
to obtain near-optimal policies away from the limiting regime. To that end, we employed
a simulation-based optimization method that optimizes policy parameters by obtaining
gradient information throughout the course of a simulation of the system. Our approach
can handle large, realistic, problem sizes.

In practice, where demand is nonstationary but slowly varying, the proposed policy leads
to timme-of-day pricing. There is substantial accumulated experience with such policies in the
telecommunications industry, which facilitates their actual implementation. A practical im-
plementation would also need to be coupled with a demand estimation mechanism (in fact,
only demand elasticity information is needed). The proposed simulation-based optimization
approach can be driven by the actual operation of the network, instead of a simulation. In
this setting. a demand estimation mechanism can be naturally be incorporated.

We also studied revenue and welfare maximization problems for networks with demand
substitution effects. In particular, increasing the price of a class decreases its demand
but may boost demand for other classes. We established the asymptotic optimality of the
properly chosen static policy and characterized the structure of the asymptotically optimal
static policy. A numerical example was presented to show how we can use this structure
and a simulation-based optimization method to obtain a good static pricing policy.

Some interesting problems that we will be focus on in the future include the pricing
of networks that use dynamic (instead of fixed) routing, both with and without demand
substitution effects. We also plan to consider models of demand with more complicated

stochastic characteristics.
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8.2 Inventory Control in Supply Chains

We have developed two production policies for inventory control in a multi-stage single-
class supply chain. Demand and service processes are general, potentially autocorrelated
processes, which makes it possible to model complex demand scenarios and failure-prone
production facilities. Both policies emphasize quality of service, which is becoming impor-
tant in modern manufacturing, by maintaining desirable service level constraints. The first
policy is a base-stock policy that uses only local inventory information. The second policy
is an echelon-base stock policy. In both cases we relied upon large deviations techniques
for analysis. This led to asymptotically tight approximations for the stockout probabili-
ties which allows us to analytically obtain appropriate hedging points that maintain the
desirable service level constraints.

Our analysis under the echelon-base stock policy provides particular insight on how
stockouts occur. In particular, it identifies a “bottleneck” stage whose production capacity
is “responsible” for stockouts at stage 1. But. this “bottleneck” stage is not necessarily
the one with the smallest mean production capacity; it depends on the full distribution
of the production processes. We provided a simple numerical example to underline this
observation, which at first sight might appear counter-intuitive.

The echelon base-stock policy enables optimization among all possible hedging point
vectors that satisfy the service level constraints; by solving a nonlinear optimization prob-
lem we select the one with minimum expected inventory cost. Numerical results show that
the solutions obtained by analysis are very close to the ones obtained by brute force sim-
ulation. Our analytic approach for selecting appropriate hedging points leads to dramatic
computational savings when compared to the time needed to obtain them by simulation.

As a simple extension to the multi-stage multi-class system, we proposed an approach to
decompose the system into several multi-stage single-class systems using a processor sharing
policy. Our analysis, though, did not fully take into account the fact that capacity can be

reallocated from idle classes to busy ones. Further work will seek to obtain tighter large
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deviations results for multi-stage systems, as for example in [BPT99]. It is also of interest
to consider alternative scheduling policies.

An additional future research direction is to analyze assembly and distribution systems
using large deviation techniques. For an assembly-to-order system, our result on single-stage
system can be applied, and an assembly-to-stock system has similarities to the multi-stage
systems we studied. For distribution systems, if we only consider the supplier side, the model
is the same as for the single-stage system with aggregated demand from all retailers. Cases

where retailers and suppliers are more tightly integrated needs more careful investigation.
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